parent
dd09dc7af6
commit
b4a631277a
|
@ -42,15 +42,16 @@ result field to be present.
|
|||
==== {api-request-body-title}
|
||||
|
||||
`evaluation`::
|
||||
(Required, object) Defines the type of evaluation you want to perform. The
|
||||
value of this object can be different depending on the type of evaluation you
|
||||
want to perform. See <<ml-evaluate-dfanalytics-resources>>.
|
||||
(Required, object) Defines the type of evaluation you want to perform.
|
||||
See <<ml-evaluate-dfanalytics-resources>>.
|
||||
+
|
||||
--
|
||||
Available evaluation types:
|
||||
|
||||
* `binary_soft_classification`
|
||||
* `regression`
|
||||
* `classification`
|
||||
|
||||
--
|
||||
|
||||
`index`::
|
||||
|
@ -58,14 +59,14 @@ Available evaluation types:
|
|||
performed.
|
||||
|
||||
`query`::
|
||||
(Optional, object) A query clause that retrieves a subset of data from the
|
||||
(Optional, object) A query clause that retrieves a subset of data from the
|
||||
source index. See <<query-dsl>>.
|
||||
|
||||
[[ml-evaluate-dfanalytics-resources]]
|
||||
==== {dfanalytics-cap} evaluation resources
|
||||
|
||||
[[binary-sc-resources]]
|
||||
===== Binary soft classification configuration objects
|
||||
===== Binary soft classification evaluation objects
|
||||
|
||||
Binary soft classification evaluates the results of an analysis which outputs
|
||||
the probability that each document belongs to a certain class. For example, in
|
||||
|
@ -86,25 +87,25 @@ document is an outlier.
|
|||
(Optional, object) Specifies the metrics that are used for the evaluation.
|
||||
Available metrics:
|
||||
|
||||
`auc_roc`::
|
||||
`auc_roc`:::
|
||||
(Optional, object) The AUC ROC (area under the curve of the receiver
|
||||
operating characteristic) score and optionally the curve. Default value is
|
||||
{"includes_curve": false}.
|
||||
|
||||
`precision`::
|
||||
(Optional, object) Set the different thresholds of the {olscore} at where
|
||||
the metric is calculated. Default value is {"at": [0.25, 0.50, 0.75]}.
|
||||
|
||||
`recall`::
|
||||
(Optional, object) Set the different thresholds of the {olscore} at where
|
||||
the metric is calculated. Default value is {"at": [0.25, 0.50, 0.75]}.
|
||||
|
||||
`confusion_matrix`::
|
||||
(Optional, object) Set the different thresholds of the {olscore} at where
|
||||
the metrics (`tp` - true positive, `fp` - false positive, `tn` - true
|
||||
negative, `fn` - false negative) are calculated. Default value is
|
||||
`confusion_matrix`:::
|
||||
(Optional, object) Set the different thresholds of the {olscore} at where
|
||||
the metrics (`tp` - true positive, `fp` - false positive, `tn` - true
|
||||
negative, `fn` - false negative) are calculated. Default value is
|
||||
{"at": [0.25, 0.50, 0.75]}.
|
||||
|
||||
`precision`:::
|
||||
(Optional, object) Set the different thresholds of the {olscore} at where
|
||||
the metric is calculated. Default value is {"at": [0.25, 0.50, 0.75]}.
|
||||
|
||||
`recall`:::
|
||||
(Optional, object) Set the different thresholds of the {olscore} at where
|
||||
the metric is calculated. Default value is {"at": [0.25, 0.50, 0.75]}.
|
||||
|
||||
|
||||
[[regression-evaluation-resources]]
|
||||
===== {regression-cap} evaluation objects
|
||||
|
@ -121,9 +122,18 @@ which outputs a prediction of values.
|
|||
in other words the results of the {regression} analysis.
|
||||
|
||||
`metrics`::
|
||||
(Required, object) Specifies the metrics that are used for the evaluation.
|
||||
Available metrics are `r_squared` and `mean_squared_error`.
|
||||
|
||||
(Optional, object) Specifies the metrics that are used for the evaluation.
|
||||
Available metrics:
|
||||
|
||||
`mean_squared_error`:::
|
||||
(Optional, object) Average squared difference between the predicted values and the actual (`ground truth`) value.
|
||||
For more information, read https://en.wikipedia.org/wiki/Mean_squared_error[this wiki article].
|
||||
|
||||
`r_squared`:::
|
||||
(Optional, object) Proportion of the variance in the dependent variable that is predictable from the independent variables.
|
||||
For more information, read https://en.wikipedia.org/wiki/Coefficient_of_determination[this wiki article].
|
||||
|
||||
|
||||
|
||||
[[classification-evaluation-resources]]
|
||||
==== {classification-cap} evaluation objects
|
||||
|
@ -133,20 +143,28 @@ outputs a prediction that identifies to which of the classes each document
|
|||
belongs.
|
||||
|
||||
`actual_field`::
|
||||
(Required, string) The field of the `index` which contains the ground truth.
|
||||
The data type of this field must be keyword.
|
||||
|
||||
`metrics`::
|
||||
(Required, object) Specifies the metrics that are used for the evaluation.
|
||||
Available metric is `multiclass_confusion_matrix`.
|
||||
(Required, string) The field of the `index` which contains the `ground truth`.
|
||||
The data type of this field must be categorical.
|
||||
|
||||
`predicted_field`::
|
||||
(Required, string) The field in the `index` that contains the predicted value,
|
||||
in other words the results of the {classanalysis}. The data type of this field
|
||||
is string. You need to add `.keyword` to the predicted field name (the name
|
||||
you put in the {classanalysis} object as `prediction_field_name` or the
|
||||
default value of the same field if you didn't specified explicitly). For
|
||||
example, `predicted_field` : `ml.animal_class_prediction.keyword`.
|
||||
in other words the results of the {classanalysis}.
|
||||
|
||||
`metrics`::
|
||||
(Optional, object) Specifies the metrics that are used for the evaluation.
|
||||
Available metrics:
|
||||
|
||||
`accuracy`:::
|
||||
(Optional, object) Accuracy of predictions (per-class and overall).
|
||||
|
||||
`multiclass_confusion_matrix`:::
|
||||
(Optional, object) Multiclass confusion matrix.
|
||||
|
||||
`precision`:::
|
||||
(Optional, object) Precision of predictions (per-class and average).
|
||||
|
||||
`recall`:::
|
||||
(Optional, object) Recall of predictions (per-class and average).
|
||||
|
||||
|
||||
////
|
||||
|
@ -359,7 +377,7 @@ POST _ml/data_frame/_evaluate
|
|||
"evaluation": {
|
||||
"classification": { <1>
|
||||
"actual_field": "animal_class", <2>
|
||||
"predicted_field": "ml.animal_class_prediction.keyword", <3>
|
||||
"predicted_field": "ml.animal_class_prediction", <3>
|
||||
"metrics": {
|
||||
"multiclass_confusion_matrix" : {} <4>
|
||||
}
|
||||
|
@ -373,8 +391,7 @@ POST _ml/data_frame/_evaluate
|
|||
<2> The field that contains the ground truth value for the actual animal
|
||||
classification. This is required in order to evaluate results.
|
||||
<3> The field that contains the predicted value for animal classification by
|
||||
the {classanalysis}. Since the field storing predicted class is dynamically
|
||||
mapped as text and keyword, you need to add the `.keyword` suffix to the name.
|
||||
the {classanalysis}.
|
||||
<4> Specifies the metric for the evaluation.
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue