* [ML][Inference][HLRC] add GET _stats (#49562) * fixing for backport
This commit is contained in:
parent
a42003b95b
commit
b5d7c939f8
|
@ -61,6 +61,7 @@ import org.elasticsearch.client.ml.GetModelSnapshotsRequest;
|
|||
import org.elasticsearch.client.ml.GetOverallBucketsRequest;
|
||||
import org.elasticsearch.client.ml.GetRecordsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsStatsRequest;
|
||||
import org.elasticsearch.client.ml.MlInfoRequest;
|
||||
import org.elasticsearch.client.ml.OpenJobRequest;
|
||||
import org.elasticsearch.client.ml.PostCalendarEventRequest;
|
||||
|
@ -749,6 +750,31 @@ final class MLRequestConverters {
|
|||
return request;
|
||||
}
|
||||
|
||||
static Request getTrainedModelsStats(GetTrainedModelsStatsRequest getTrainedModelsStatsRequest) {
|
||||
String endpoint = new EndpointBuilder()
|
||||
.addPathPartAsIs("_ml", "inference")
|
||||
.addPathPart(Strings.collectionToCommaDelimitedString(getTrainedModelsStatsRequest.getIds()))
|
||||
.addPathPart("_stats")
|
||||
.build();
|
||||
RequestConverters.Params params = new RequestConverters.Params();
|
||||
if (getTrainedModelsStatsRequest.getPageParams() != null) {
|
||||
PageParams pageParams = getTrainedModelsStatsRequest.getPageParams();
|
||||
if (pageParams.getFrom() != null) {
|
||||
params.putParam(PageParams.FROM.getPreferredName(), pageParams.getFrom().toString());
|
||||
}
|
||||
if (pageParams.getSize() != null) {
|
||||
params.putParam(PageParams.SIZE.getPreferredName(), pageParams.getSize().toString());
|
||||
}
|
||||
}
|
||||
if (getTrainedModelsStatsRequest.getAllowNoMatch() != null) {
|
||||
params.putParam(GetTrainedModelsStatsRequest.ALLOW_NO_MATCH,
|
||||
Boolean.toString(getTrainedModelsStatsRequest.getAllowNoMatch()));
|
||||
}
|
||||
Request request = new Request(HttpGet.METHOD_NAME, endpoint);
|
||||
request.addParameters(params.asMap());
|
||||
return request;
|
||||
}
|
||||
|
||||
static Request deleteTrainedModel(DeleteTrainedModelRequest deleteRequest) {
|
||||
String endpoint = new EndpointBuilder()
|
||||
.addPathPartAsIs("_ml", "inference")
|
||||
|
|
|
@ -77,6 +77,8 @@ import org.elasticsearch.client.ml.GetRecordsRequest;
|
|||
import org.elasticsearch.client.ml.GetRecordsResponse;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsResponse;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsStatsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsStatsResponse;
|
||||
import org.elasticsearch.client.ml.MlInfoRequest;
|
||||
import org.elasticsearch.client.ml.MlInfoResponse;
|
||||
import org.elasticsearch.client.ml.OpenJobRequest;
|
||||
|
@ -2338,6 +2340,49 @@ public final class MachineLearningClient {
|
|||
Collections.emptySet());
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets trained model stats
|
||||
* <p>
|
||||
* For additional info
|
||||
* see <a href="TODO">
|
||||
* GET Trained Model Stats documentation</a>
|
||||
*
|
||||
* @param request The {@link GetTrainedModelsStatsRequest}
|
||||
* @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized
|
||||
* @return {@link GetTrainedModelsStatsResponse} response object
|
||||
*/
|
||||
public GetTrainedModelsStatsResponse getTrainedModelsStats(GetTrainedModelsStatsRequest request,
|
||||
RequestOptions options) throws IOException {
|
||||
return restHighLevelClient.performRequestAndParseEntity(request,
|
||||
MLRequestConverters::getTrainedModelsStats,
|
||||
options,
|
||||
GetTrainedModelsStatsResponse::fromXContent,
|
||||
Collections.emptySet());
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets trained model stats asynchronously and notifies listener upon completion
|
||||
* <p>
|
||||
* For additional info
|
||||
* see <a href="TODO">
|
||||
* GET Trained Model Stats documentation</a>
|
||||
*
|
||||
* @param request The {@link GetTrainedModelsStatsRequest}
|
||||
* @param options Additional request options (e.g. headers), use {@link RequestOptions#DEFAULT} if nothing needs to be customized
|
||||
* @param listener Listener to be notified upon request completion
|
||||
* @return cancellable that may be used to cancel the request
|
||||
*/
|
||||
public Cancellable getTrainedModelsStatsAsync(GetTrainedModelsStatsRequest request,
|
||||
RequestOptions options,
|
||||
ActionListener<GetTrainedModelsStatsResponse> listener) {
|
||||
return restHighLevelClient.performRequestAsyncAndParseEntity(request,
|
||||
MLRequestConverters::getTrainedModelsStats,
|
||||
options,
|
||||
GetTrainedModelsStatsResponse::fromXContent,
|
||||
listener,
|
||||
Collections.emptySet());
|
||||
}
|
||||
|
||||
/**
|
||||
* Deletes the given Trained Model
|
||||
* <p>
|
||||
|
|
|
@ -0,0 +1,103 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.client.ml;
|
||||
|
||||
import org.elasticsearch.client.Validatable;
|
||||
import org.elasticsearch.client.ValidationException;
|
||||
import org.elasticsearch.client.core.PageParams;
|
||||
import org.elasticsearch.common.Nullable;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
|
||||
public class GetTrainedModelsStatsRequest implements Validatable {
|
||||
|
||||
public static final String ALLOW_NO_MATCH = "allow_no_match";
|
||||
|
||||
private final List<String> ids;
|
||||
private Boolean allowNoMatch;
|
||||
private PageParams pageParams;
|
||||
|
||||
/**
|
||||
* Helper method to create a request that will get ALL TrainedModelStats
|
||||
* @return new {@link GetTrainedModelsStatsRequest} object for the id "_all"
|
||||
*/
|
||||
public static GetTrainedModelsStatsRequest getAllTrainedModelStatsRequest() {
|
||||
return new GetTrainedModelsStatsRequest("_all");
|
||||
}
|
||||
|
||||
public GetTrainedModelsStatsRequest(String... ids) {
|
||||
this.ids = Arrays.asList(ids);
|
||||
}
|
||||
|
||||
public List<String> getIds() {
|
||||
return ids;
|
||||
}
|
||||
|
||||
public Boolean getAllowNoMatch() {
|
||||
return allowNoMatch;
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether to ignore if a wildcard expression matches no trained models.
|
||||
*
|
||||
* @param allowNoMatch If this is {@code false}, then an error is returned when a wildcard (or {@code _all})
|
||||
* does not match any trained models
|
||||
*/
|
||||
public GetTrainedModelsStatsRequest setAllowNoMatch(boolean allowNoMatch) {
|
||||
this.allowNoMatch = allowNoMatch;
|
||||
return this;
|
||||
}
|
||||
|
||||
public PageParams getPageParams() {
|
||||
return pageParams;
|
||||
}
|
||||
|
||||
public GetTrainedModelsStatsRequest setPageParams(@Nullable PageParams pageParams) {
|
||||
this.pageParams = pageParams;
|
||||
return this;
|
||||
}
|
||||
|
||||
@Override
|
||||
public Optional<ValidationException> validate() {
|
||||
if (ids == null || ids.isEmpty()) {
|
||||
return Optional.of(ValidationException.withError("trained model id must not be null"));
|
||||
}
|
||||
return Optional.empty();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) return true;
|
||||
if (o == null || getClass() != o.getClass()) return false;
|
||||
|
||||
GetTrainedModelsStatsRequest other = (GetTrainedModelsStatsRequest) o;
|
||||
return Objects.equals(ids, other.ids)
|
||||
&& Objects.equals(allowNoMatch, other.allowNoMatch)
|
||||
&& Objects.equals(pageParams, other.pageParams);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(ids, allowNoMatch, pageParams);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,86 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.client.ml;
|
||||
|
||||
import org.elasticsearch.client.ml.inference.TrainedModelStats;
|
||||
import org.elasticsearch.common.ParseField;
|
||||
import org.elasticsearch.common.xcontent.ConstructingObjectParser;
|
||||
import org.elasticsearch.common.xcontent.XContentParser;
|
||||
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
|
||||
import static org.elasticsearch.common.xcontent.ConstructingObjectParser.constructorArg;
|
||||
|
||||
public class GetTrainedModelsStatsResponse {
|
||||
|
||||
public static final ParseField TRAINED_MODEL_STATS = new ParseField("trained_model_stats");
|
||||
public static final ParseField COUNT = new ParseField("count");
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
static final ConstructingObjectParser<GetTrainedModelsStatsResponse, Void> PARSER =
|
||||
new ConstructingObjectParser<>(
|
||||
"get_trained_model_stats",
|
||||
true,
|
||||
args -> new GetTrainedModelsStatsResponse((List<TrainedModelStats>) args[0], (Long) args[1]));
|
||||
|
||||
static {
|
||||
PARSER.declareObjectArray(constructorArg(), (p, c) -> TrainedModelStats.fromXContent(p), TRAINED_MODEL_STATS);
|
||||
PARSER.declareLong(constructorArg(), COUNT);
|
||||
}
|
||||
|
||||
public static GetTrainedModelsStatsResponse fromXContent(final XContentParser parser) {
|
||||
return PARSER.apply(parser, null);
|
||||
}
|
||||
|
||||
private final List<TrainedModelStats> trainedModelStats;
|
||||
private final Long count;
|
||||
|
||||
|
||||
public GetTrainedModelsStatsResponse(List<TrainedModelStats> trainedModelStats, Long count) {
|
||||
this.trainedModelStats = trainedModelStats;
|
||||
this.count = count;
|
||||
}
|
||||
|
||||
public List<TrainedModelStats> getTrainedModelStats() {
|
||||
return trainedModelStats;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return The total count of the trained models that matched the ID pattern.
|
||||
*/
|
||||
public Long getCount() {
|
||||
return count;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) return true;
|
||||
if (o == null || getClass() != o.getClass()) return false;
|
||||
|
||||
GetTrainedModelsStatsResponse other = (GetTrainedModelsStatsResponse) o;
|
||||
return Objects.equals(this.trainedModelStats, other.trainedModelStats) && Objects.equals(this.count, other.count);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(trainedModelStats, count);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,123 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
package org.elasticsearch.client.ml.inference;
|
||||
|
||||
import org.elasticsearch.common.Nullable;
|
||||
import org.elasticsearch.common.ParseField;
|
||||
import org.elasticsearch.common.xcontent.ConstructingObjectParser;
|
||||
import org.elasticsearch.common.xcontent.ToXContentObject;
|
||||
import org.elasticsearch.common.xcontent.XContentBuilder;
|
||||
import org.elasticsearch.common.xcontent.XContentParser;
|
||||
import org.elasticsearch.ingest.IngestStats;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.Map;
|
||||
import java.util.Objects;
|
||||
|
||||
import static org.elasticsearch.common.xcontent.ConstructingObjectParser.constructorArg;
|
||||
import static org.elasticsearch.common.xcontent.ConstructingObjectParser.optionalConstructorArg;
|
||||
|
||||
public class TrainedModelStats implements ToXContentObject {
|
||||
|
||||
public static final ParseField MODEL_ID = new ParseField("model_id");
|
||||
public static final ParseField PIPELINE_COUNT = new ParseField("pipeline_count");
|
||||
public static final ParseField INGEST_STATS = new ParseField("ingest");
|
||||
|
||||
private final String modelId;
|
||||
private final Map<String, Object> ingestStats;
|
||||
private final int pipelineCount;
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
static final ConstructingObjectParser<TrainedModelStats, Void> PARSER =
|
||||
new ConstructingObjectParser<>(
|
||||
"trained_model_stats",
|
||||
true,
|
||||
args -> new TrainedModelStats((String) args[0], (Map<String, Object>) args[1], (Integer) args[2]));
|
||||
|
||||
static {
|
||||
PARSER.declareString(constructorArg(), MODEL_ID);
|
||||
PARSER.declareObject(optionalConstructorArg(), (p, c) -> p.mapOrdered(), INGEST_STATS);
|
||||
PARSER.declareInt(constructorArg(), PIPELINE_COUNT);
|
||||
}
|
||||
|
||||
public static TrainedModelStats fromXContent(XContentParser parser) {
|
||||
return PARSER.apply(parser, null);
|
||||
}
|
||||
|
||||
public TrainedModelStats(String modelId, Map<String, Object> ingestStats, int pipelineCount) {
|
||||
this.modelId = modelId;
|
||||
this.ingestStats = ingestStats;
|
||||
this.pipelineCount = pipelineCount;
|
||||
}
|
||||
|
||||
/**
|
||||
* The model id for which the stats apply
|
||||
*/
|
||||
public String getModelId() {
|
||||
return modelId;
|
||||
}
|
||||
|
||||
/**
|
||||
* Ingest level statistics. See {@link IngestStats#toXContent(XContentBuilder, Params)} for fields and format
|
||||
* If there are no ingest pipelines referencing the model, then the ingest statistics could be null.
|
||||
*/
|
||||
@Nullable
|
||||
public Map<String, Object> getIngestStats() {
|
||||
return ingestStats;
|
||||
}
|
||||
|
||||
/**
|
||||
* The total number of pipelines that reference the trained model
|
||||
*/
|
||||
public int getPipelineCount() {
|
||||
return pipelineCount;
|
||||
}
|
||||
|
||||
@Override
|
||||
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
|
||||
builder.startObject();
|
||||
builder.field(MODEL_ID.getPreferredName(), modelId);
|
||||
builder.field(PIPELINE_COUNT.getPreferredName(), pipelineCount);
|
||||
if (ingestStats != null) {
|
||||
builder.field(INGEST_STATS.getPreferredName(), ingestStats);
|
||||
}
|
||||
builder.endObject();
|
||||
return builder;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(modelId, ingestStats, pipelineCount);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object obj) {
|
||||
if (obj == null) {
|
||||
return false;
|
||||
}
|
||||
if (getClass() != obj.getClass()) {
|
||||
return false;
|
||||
}
|
||||
TrainedModelStats other = (TrainedModelStats) obj;
|
||||
return Objects.equals(this.modelId, other.modelId)
|
||||
&& Objects.equals(this.ingestStats, other.ingestStats)
|
||||
&& Objects.equals(this.pipelineCount, other.pipelineCount);
|
||||
}
|
||||
|
||||
}
|
|
@ -59,6 +59,7 @@ import org.elasticsearch.client.ml.GetModelSnapshotsRequest;
|
|||
import org.elasticsearch.client.ml.GetOverallBucketsRequest;
|
||||
import org.elasticsearch.client.ml.GetRecordsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsStatsRequest;
|
||||
import org.elasticsearch.client.ml.MlInfoRequest;
|
||||
import org.elasticsearch.client.ml.OpenJobRequest;
|
||||
import org.elasticsearch.client.ml.PostCalendarEventRequest;
|
||||
|
@ -825,7 +826,6 @@ public class MLRequestConvertersTests extends ESTestCase {
|
|||
Request request = MLRequestConverters.getTrainedModels(getRequest);
|
||||
assertEquals(HttpGet.METHOD_NAME, request.getMethod());
|
||||
assertEquals("/_ml/inference/" + modelId1 + "," + modelId2 + "," + modelId3, request.getEndpoint());
|
||||
assertThat(request.getParameters(), allOf(hasEntry("from", "100"), hasEntry("size", "300"), hasEntry("allow_no_match", "false")));
|
||||
assertThat(request.getParameters(),
|
||||
allOf(
|
||||
hasEntry("from", "100"),
|
||||
|
@ -837,6 +837,26 @@ public class MLRequestConvertersTests extends ESTestCase {
|
|||
assertNull(request.getEntity());
|
||||
}
|
||||
|
||||
public void testGetTrainedModelsStats() {
|
||||
String modelId1 = randomAlphaOfLength(10);
|
||||
String modelId2 = randomAlphaOfLength(10);
|
||||
String modelId3 = randomAlphaOfLength(10);
|
||||
GetTrainedModelsStatsRequest getRequest = new GetTrainedModelsStatsRequest(modelId1, modelId2, modelId3)
|
||||
.setAllowNoMatch(false)
|
||||
.setPageParams(new PageParams(100, 300));
|
||||
|
||||
Request request = MLRequestConverters.getTrainedModelsStats(getRequest);
|
||||
assertEquals(HttpGet.METHOD_NAME, request.getMethod());
|
||||
assertEquals("/_ml/inference/" + modelId1 + "," + modelId2 + "," + modelId3 + "/_stats", request.getEndpoint());
|
||||
assertThat(request.getParameters(),
|
||||
allOf(
|
||||
hasEntry("from", "100"),
|
||||
hasEntry("size", "300"),
|
||||
hasEntry("allow_no_match", "false")
|
||||
));
|
||||
assertNull(request.getEntity());
|
||||
}
|
||||
|
||||
public void testDeleteTrainedModel() {
|
||||
DeleteTrainedModelRequest deleteRequest = new DeleteTrainedModelRequest(randomAlphaOfLength(10));
|
||||
Request request = MLRequestConverters.deleteTrainedModel(deleteRequest);
|
||||
|
|
|
@ -24,6 +24,7 @@ import org.elasticsearch.action.bulk.BulkRequest;
|
|||
import org.elasticsearch.action.get.GetRequest;
|
||||
import org.elasticsearch.action.get.GetResponse;
|
||||
import org.elasticsearch.action.index.IndexRequest;
|
||||
import org.elasticsearch.action.ingest.PutPipelineRequest;
|
||||
import org.elasticsearch.action.support.WriteRequest;
|
||||
import org.elasticsearch.action.support.master.AcknowledgedResponse;
|
||||
import org.elasticsearch.action.update.UpdateRequest;
|
||||
|
@ -77,6 +78,8 @@ import org.elasticsearch.client.ml.GetModelSnapshotsRequest;
|
|||
import org.elasticsearch.client.ml.GetModelSnapshotsResponse;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsResponse;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsStatsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsStatsResponse;
|
||||
import org.elasticsearch.client.ml.MlInfoRequest;
|
||||
import org.elasticsearch.client.ml.MlInfoResponse;
|
||||
import org.elasticsearch.client.ml.OpenJobRequest;
|
||||
|
@ -148,6 +151,8 @@ import org.elasticsearch.client.ml.filestructurefinder.FileStructure;
|
|||
import org.elasticsearch.client.ml.inference.TrainedModelConfig;
|
||||
import org.elasticsearch.client.ml.inference.TrainedModelDefinition;
|
||||
import org.elasticsearch.client.ml.inference.TrainedModelDefinitionTests;
|
||||
import org.elasticsearch.client.ml.inference.TrainedModelStats;
|
||||
import org.elasticsearch.client.ml.inference.trainedmodel.TargetType;
|
||||
import org.elasticsearch.client.ml.job.config.AnalysisConfig;
|
||||
import org.elasticsearch.client.ml.job.config.DataDescription;
|
||||
import org.elasticsearch.client.ml.job.config.Detector;
|
||||
|
@ -157,6 +162,7 @@ import org.elasticsearch.client.ml.job.config.JobUpdate;
|
|||
import org.elasticsearch.client.ml.job.config.MlFilter;
|
||||
import org.elasticsearch.client.ml.job.process.ModelSnapshot;
|
||||
import org.elasticsearch.client.ml.job.stats.JobStats;
|
||||
import org.elasticsearch.common.bytes.BytesArray;
|
||||
import org.elasticsearch.common.bytes.BytesReference;
|
||||
import org.elasticsearch.common.io.stream.BytesStreamOutput;
|
||||
import org.elasticsearch.common.unit.ByteSizeUnit;
|
||||
|
@ -2123,6 +2129,67 @@ public class MachineLearningIT extends ESRestHighLevelClientTestCase {
|
|||
}
|
||||
}
|
||||
|
||||
public void testGetTrainedModelsStats() throws Exception {
|
||||
MachineLearningClient machineLearningClient = highLevelClient().machineLearning();
|
||||
String modelIdPrefix = "get-trained-model-stats-";
|
||||
int numberOfModels = 5;
|
||||
for (int i = 0; i < numberOfModels; ++i) {
|
||||
String modelId = modelIdPrefix + i;
|
||||
putTrainedModel(modelId);
|
||||
}
|
||||
|
||||
String regressionPipeline = "{" +
|
||||
" \"processors\": [\n" +
|
||||
" {\n" +
|
||||
" \"inference\": {\n" +
|
||||
" \"target_field\": \"regression_value\",\n" +
|
||||
" \"model_id\": \"" + modelIdPrefix + 0 + "\",\n" +
|
||||
" \"inference_config\": {\"regression\": {}},\n" +
|
||||
" \"field_mappings\": {\n" +
|
||||
" \"col1\": \"col1\",\n" +
|
||||
" \"col2\": \"col2\",\n" +
|
||||
" \"col3\": \"col3\",\n" +
|
||||
" \"col4\": \"col4\"\n" +
|
||||
" }\n" +
|
||||
" }\n" +
|
||||
" }]}\n";
|
||||
|
||||
highLevelClient().ingest().putPipeline(
|
||||
new PutPipelineRequest("regression-stats-pipeline",
|
||||
new BytesArray(regressionPipeline.getBytes(StandardCharsets.UTF_8)),
|
||||
XContentType.JSON),
|
||||
RequestOptions.DEFAULT);
|
||||
{
|
||||
GetTrainedModelsStatsResponse getTrainedModelsStatsResponse = execute(
|
||||
GetTrainedModelsStatsRequest.getAllTrainedModelStatsRequest(),
|
||||
machineLearningClient::getTrainedModelsStats, machineLearningClient::getTrainedModelsStatsAsync);
|
||||
assertThat(getTrainedModelsStatsResponse.getTrainedModelStats(), hasSize(numberOfModels));
|
||||
assertThat(getTrainedModelsStatsResponse.getCount(), equalTo(5L));
|
||||
assertThat(getTrainedModelsStatsResponse.getTrainedModelStats().get(0).getPipelineCount(), equalTo(1));
|
||||
assertThat(getTrainedModelsStatsResponse.getTrainedModelStats().get(1).getPipelineCount(), equalTo(0));
|
||||
}
|
||||
{
|
||||
GetTrainedModelsStatsResponse getTrainedModelsStatsResponse = execute(
|
||||
new GetTrainedModelsStatsRequest(modelIdPrefix + 4, modelIdPrefix + 2, modelIdPrefix + 3),
|
||||
machineLearningClient::getTrainedModelsStats, machineLearningClient::getTrainedModelsStatsAsync);
|
||||
assertThat(getTrainedModelsStatsResponse.getTrainedModelStats(), hasSize(3));
|
||||
assertThat(getTrainedModelsStatsResponse.getCount(), equalTo(3L));
|
||||
}
|
||||
{
|
||||
GetTrainedModelsStatsResponse getTrainedModelsStatsResponse = execute(
|
||||
new GetTrainedModelsStatsRequest(modelIdPrefix + "*").setPageParams(new PageParams(1, 2)),
|
||||
machineLearningClient::getTrainedModelsStats, machineLearningClient::getTrainedModelsStatsAsync);
|
||||
assertThat(getTrainedModelsStatsResponse.getTrainedModelStats(), hasSize(2));
|
||||
assertThat(getTrainedModelsStatsResponse.getCount(), equalTo(5L));
|
||||
assertThat(
|
||||
getTrainedModelsStatsResponse.getTrainedModelStats()
|
||||
.stream()
|
||||
.map(TrainedModelStats::getModelId)
|
||||
.collect(Collectors.toList()),
|
||||
containsInAnyOrder(modelIdPrefix + 1, modelIdPrefix + 2));
|
||||
}
|
||||
}
|
||||
|
||||
public void testDeleteTrainedModel() throws Exception {
|
||||
MachineLearningClient machineLearningClient = highLevelClient().machineLearning();
|
||||
String modelId = "delete-trained-model-test";
|
||||
|
@ -2328,7 +2395,7 @@ public class MachineLearningIT extends ESRestHighLevelClientTestCase {
|
|||
}
|
||||
|
||||
private void putTrainedModel(String modelId) throws IOException {
|
||||
TrainedModelDefinition definition = TrainedModelDefinitionTests.createRandomBuilder().build();
|
||||
TrainedModelDefinition definition = TrainedModelDefinitionTests.createRandomBuilder(TargetType.REGRESSION).build();
|
||||
highLevelClient().index(
|
||||
new IndexRequest(".ml-inference-000001")
|
||||
.setRefreshPolicy(WriteRequest.RefreshPolicy.IMMEDIATE)
|
||||
|
|
|
@ -91,6 +91,8 @@ import org.elasticsearch.client.ml.GetRecordsRequest;
|
|||
import org.elasticsearch.client.ml.GetRecordsResponse;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsResponse;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsStatsRequest;
|
||||
import org.elasticsearch.client.ml.GetTrainedModelsStatsResponse;
|
||||
import org.elasticsearch.client.ml.MlInfoRequest;
|
||||
import org.elasticsearch.client.ml.MlInfoResponse;
|
||||
import org.elasticsearch.client.ml.OpenJobRequest;
|
||||
|
@ -163,6 +165,7 @@ import org.elasticsearch.client.ml.filestructurefinder.FileStructure;
|
|||
import org.elasticsearch.client.ml.inference.TrainedModelConfig;
|
||||
import org.elasticsearch.client.ml.inference.TrainedModelDefinition;
|
||||
import org.elasticsearch.client.ml.inference.TrainedModelDefinitionTests;
|
||||
import org.elasticsearch.client.ml.inference.TrainedModelStats;
|
||||
import org.elasticsearch.client.ml.job.config.AnalysisConfig;
|
||||
import org.elasticsearch.client.ml.job.config.AnalysisLimits;
|
||||
import org.elasticsearch.client.ml.job.config.DataDescription;
|
||||
|
@ -3593,6 +3596,58 @@ public class MlClientDocumentationIT extends ESRestHighLevelClientTestCase {
|
|||
}
|
||||
}
|
||||
|
||||
public void testGetTrainedModelsStats() throws Exception {
|
||||
putTrainedModel("my-trained-model");
|
||||
RestHighLevelClient client = highLevelClient();
|
||||
{
|
||||
// tag::get-trained-models-stats-request
|
||||
GetTrainedModelsStatsRequest request =
|
||||
new GetTrainedModelsStatsRequest("my-trained-model") // <1>
|
||||
.setPageParams(new PageParams(0, 1)) // <2>
|
||||
.setAllowNoMatch(true); // <3>
|
||||
// end::get-trained-models-stats-request
|
||||
|
||||
// tag::get-trained-models-stats-execute
|
||||
GetTrainedModelsStatsResponse response =
|
||||
client.machineLearning().getTrainedModelsStats(request, RequestOptions.DEFAULT);
|
||||
// end::get-trained-models-stats-execute
|
||||
|
||||
// tag::get-trained-models-stats-response
|
||||
List<TrainedModelStats> models = response.getTrainedModelStats();
|
||||
// end::get-trained-models-stats-response
|
||||
|
||||
assertThat(models, hasSize(1));
|
||||
}
|
||||
{
|
||||
GetTrainedModelsStatsRequest request = new GetTrainedModelsStatsRequest("my-trained-model");
|
||||
|
||||
// tag::get-trained-models-stats-execute-listener
|
||||
ActionListener<GetTrainedModelsStatsResponse> listener = new ActionListener<GetTrainedModelsStatsResponse>() {
|
||||
@Override
|
||||
public void onResponse(GetTrainedModelsStatsResponse response) {
|
||||
// <1>
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onFailure(Exception e) {
|
||||
// <2>
|
||||
}
|
||||
};
|
||||
// end::get-trained-models-stats-execute-listener
|
||||
|
||||
// Replace the empty listener by a blocking listener in test
|
||||
CountDownLatch latch = new CountDownLatch(1);
|
||||
listener = new LatchedActionListener<>(listener, latch);
|
||||
|
||||
// tag::get-trained-models-stats-execute-async
|
||||
client.machineLearning()
|
||||
.getTrainedModelsStatsAsync(request, RequestOptions.DEFAULT, listener); // <1>
|
||||
// end::get-trained-models-stats-execute-async
|
||||
|
||||
assertTrue(latch.await(30L, TimeUnit.SECONDS));
|
||||
}
|
||||
}
|
||||
|
||||
public void testDeleteTrainedModel() throws Exception {
|
||||
RestHighLevelClient client = highLevelClient();
|
||||
{
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.client.ml;
|
||||
|
||||
import org.elasticsearch.test.ESTestCase;
|
||||
|
||||
import java.util.Optional;
|
||||
|
||||
import static org.hamcrest.Matchers.containsString;
|
||||
|
||||
public class GetTrainedModelsStatsRequestTests extends ESTestCase {
|
||||
|
||||
public void testValidate_Ok() {
|
||||
assertEquals(Optional.empty(), new GetTrainedModelsStatsRequest("valid-id").validate());
|
||||
assertEquals(Optional.empty(), new GetTrainedModelsStatsRequest("").validate());
|
||||
}
|
||||
|
||||
public void testValidate_Failure() {
|
||||
assertThat(new GetTrainedModelsStatsRequest(new String[0]).validate().get().getMessage(),
|
||||
containsString("trained model id must not be null"));
|
||||
}
|
||||
}
|
|
@ -21,6 +21,7 @@ package org.elasticsearch.client.ml.inference;
|
|||
import org.elasticsearch.client.ml.inference.preprocessing.FrequencyEncodingTests;
|
||||
import org.elasticsearch.client.ml.inference.preprocessing.OneHotEncodingTests;
|
||||
import org.elasticsearch.client.ml.inference.preprocessing.TargetMeanEncodingTests;
|
||||
import org.elasticsearch.client.ml.inference.trainedmodel.TargetType;
|
||||
import org.elasticsearch.client.ml.inference.trainedmodel.ensemble.EnsembleTests;
|
||||
import org.elasticsearch.client.ml.inference.trainedmodel.tree.TreeTests;
|
||||
import org.elasticsearch.common.settings.Settings;
|
||||
|
@ -56,6 +57,10 @@ public class TrainedModelDefinitionTests extends AbstractXContentTestCase<Traine
|
|||
}
|
||||
|
||||
public static TrainedModelDefinition.Builder createRandomBuilder() {
|
||||
return createRandomBuilder(randomFrom(TargetType.values()));
|
||||
}
|
||||
|
||||
public static TrainedModelDefinition.Builder createRandomBuilder(TargetType targetType) {
|
||||
int numberOfProcessors = randomIntBetween(1, 10);
|
||||
return new TrainedModelDefinition.Builder()
|
||||
.setPreProcessors(
|
||||
|
@ -65,7 +70,8 @@ public class TrainedModelDefinitionTests extends AbstractXContentTestCase<Traine
|
|||
TargetMeanEncodingTests.createRandom()))
|
||||
.limit(numberOfProcessors)
|
||||
.collect(Collectors.toList()))
|
||||
.setTrainedModel(randomFrom(TreeTests.createRandom(), EnsembleTests.createRandom()));
|
||||
.setTrainedModel(randomFrom(TreeTests.buildRandomTree(Collections.emptyList(), 6, targetType),
|
||||
EnsembleTests.createRandom(targetType)));
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -0,0 +1,96 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
package org.elasticsearch.client.ml.inference;
|
||||
|
||||
import org.elasticsearch.common.bytes.BytesReference;
|
||||
import org.elasticsearch.common.xcontent.ToXContent;
|
||||
import org.elasticsearch.common.xcontent.XContentBuilder;
|
||||
import org.elasticsearch.common.xcontent.XContentFactory;
|
||||
import org.elasticsearch.common.xcontent.XContentHelper;
|
||||
import org.elasticsearch.common.xcontent.XContentParser;
|
||||
import org.elasticsearch.ingest.IngestStats;
|
||||
import org.elasticsearch.test.AbstractXContentTestCase;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.function.Function;
|
||||
import java.util.function.Predicate;
|
||||
import java.util.stream.Collectors;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
|
||||
public class TrainedModelStatsTests extends AbstractXContentTestCase<TrainedModelStats> {
|
||||
|
||||
@Override
|
||||
protected TrainedModelStats doParseInstance(XContentParser parser) throws IOException {
|
||||
return TrainedModelStats.fromXContent(parser);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected boolean supportsUnknownFields() {
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected Predicate<String> getRandomFieldsExcludeFilter() {
|
||||
return field -> !field.isEmpty();
|
||||
}
|
||||
|
||||
@Override
|
||||
protected TrainedModelStats createTestInstance() {
|
||||
return new TrainedModelStats(
|
||||
randomAlphaOfLength(10),
|
||||
randomBoolean() ? null : randomIngestStats(),
|
||||
randomInt());
|
||||
}
|
||||
|
||||
private Map<String, Object> randomIngestStats() {
|
||||
try {
|
||||
List<String> pipelineIds = Stream.generate(()-> randomAlphaOfLength(10))
|
||||
.limit(randomIntBetween(0, 10))
|
||||
.collect(Collectors.toList());
|
||||
IngestStats stats = new IngestStats(
|
||||
new IngestStats.Stats(randomNonNegativeLong(), randomNonNegativeLong(), randomNonNegativeLong(), randomNonNegativeLong()),
|
||||
pipelineIds.stream().map(id -> new IngestStats.PipelineStat(id, randomStats())).collect(Collectors.toList()),
|
||||
pipelineIds.stream().collect(Collectors.toMap(Function.identity(), (v) -> randomProcessorStats())));
|
||||
try (XContentBuilder builder = XContentFactory.jsonBuilder()) {
|
||||
builder.startObject();
|
||||
stats.toXContent(builder, ToXContent.EMPTY_PARAMS);
|
||||
builder.endObject();
|
||||
return XContentHelper.convertToMap(BytesReference.bytes(builder), false, builder.contentType()).v2();
|
||||
}
|
||||
} catch (IOException ex) {
|
||||
fail(ex.getMessage());
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
private IngestStats.Stats randomStats(){
|
||||
return new IngestStats.Stats(randomNonNegativeLong(), randomNonNegativeLong(), randomNonNegativeLong(), randomNonNegativeLong());
|
||||
}
|
||||
|
||||
private List<IngestStats.ProcessorStat> randomProcessorStats() {
|
||||
return Stream.generate(() -> randomAlphaOfLength(10))
|
||||
.limit(randomIntBetween(0, 10))
|
||||
.map(name -> new IngestStats.ProcessorStat(name, "inference", randomStats()))
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
|
||||
}
|
|
@ -57,12 +57,16 @@ public class EnsembleTests extends AbstractXContentTestCase<Ensemble> {
|
|||
}
|
||||
|
||||
public static Ensemble createRandom() {
|
||||
return createRandom(randomFrom(TargetType.values()));
|
||||
}
|
||||
|
||||
public static Ensemble createRandom(TargetType targetType) {
|
||||
int numberOfFeatures = randomIntBetween(1, 10);
|
||||
List<String> featureNames = Stream.generate(() -> randomAlphaOfLength(10))
|
||||
.limit(numberOfFeatures)
|
||||
.collect(Collectors.toList());
|
||||
int numberOfModels = randomIntBetween(1, 10);
|
||||
List<TrainedModel> models = Stream.generate(() -> TreeTests.buildRandomTree(featureNames, 6))
|
||||
List<TrainedModel> models = Stream.generate(() -> TreeTests.buildRandomTree(featureNames, 6, targetType))
|
||||
.limit(numberOfFeatures)
|
||||
.collect(Collectors.toList());
|
||||
OutputAggregator outputAggregator = null;
|
||||
|
@ -77,7 +81,7 @@ public class EnsembleTests extends AbstractXContentTestCase<Ensemble> {
|
|||
return new Ensemble(featureNames,
|
||||
models,
|
||||
outputAggregator,
|
||||
randomFrom(TargetType.values()),
|
||||
targetType,
|
||||
categoryLabels);
|
||||
}
|
||||
|
||||
|
|
|
@ -57,10 +57,10 @@ public class TreeTests extends AbstractXContentTestCase<Tree> {
|
|||
for (int i = 0; i < numberOfFeatures; i++) {
|
||||
featureNames.add(randomAlphaOfLength(10));
|
||||
}
|
||||
return buildRandomTree(featureNames, 6);
|
||||
return buildRandomTree(featureNames, 6, randomFrom(TargetType.values()));
|
||||
}
|
||||
|
||||
public static Tree buildRandomTree(List<String> featureNames, int depth) {
|
||||
public static Tree buildRandomTree(List<String> featureNames, int depth, TargetType targetType) {
|
||||
int numFeatures = featureNames.size();
|
||||
Tree.Builder builder = Tree.builder();
|
||||
builder.setFeatureNames(featureNames);
|
||||
|
@ -88,7 +88,7 @@ public class TreeTests extends AbstractXContentTestCase<Tree> {
|
|||
categoryLabels = Arrays.asList(generateRandomStringArray(randomIntBetween(1, 10), randomIntBetween(1, 10), false, false));
|
||||
}
|
||||
return builder.setClassificationLabels(categoryLabels)
|
||||
.setTargetType(randomFrom(TargetType.values()))
|
||||
.setTargetType(targetType)
|
||||
.build();
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
--
|
||||
:api: get-trained-models-stats
|
||||
:request: GetTrainedModelsStatsRequest
|
||||
:response: GetTrainedModelsStatsResponse
|
||||
--
|
||||
[role="xpack"]
|
||||
[id="{upid}-{api}"]
|
||||
=== Get Trained Models Stats API
|
||||
|
||||
experimental[]
|
||||
|
||||
Retrieves one or more Trained Model statistics.
|
||||
The API accepts a +{request}+ object and returns a +{response}+.
|
||||
|
||||
[id="{upid}-{api}-request"]
|
||||
==== Get Trained Models Stats request
|
||||
|
||||
A +{request}+ requires either a Trained Model ID, a comma-separated list of
|
||||
IDs, or the special wildcard `_all` to get stats for all Trained Models.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests-file}[{api}-request]
|
||||
--------------------------------------------------
|
||||
<1> Constructing a new GET request referencing an existing Trained Model
|
||||
<2> Set the paging parameters
|
||||
<3> Allow empty response if no Trained Models match the provided ID patterns.
|
||||
If false, an error will be thrown if no Trained Models match the
|
||||
ID patterns.
|
||||
|
||||
include::../execution.asciidoc[]
|
||||
|
||||
[id="{upid}-{api}-response"]
|
||||
==== Response
|
||||
|
||||
The returned +{response}+ contains the statistics
|
||||
for the requested Trained Model.
|
||||
|
||||
["source","java",subs="attributes,callouts,macros"]
|
||||
--------------------------------------------------
|
||||
include-tagged::{doc-tests-file}[{api}-response]
|
||||
--------------------------------------------------
|
|
@ -302,6 +302,7 @@ The Java High Level REST Client supports the following Machine Learning APIs:
|
|||
* <<{upid}-evaluate-data-frame>>
|
||||
* <<{upid}-explain-data-frame-analytics>>
|
||||
* <<{upid}-get-trained-models>>
|
||||
* <<{upid}-get-trained-models-stats>>
|
||||
* <<{upid}-delete-trained-model>>
|
||||
* <<{upid}-put-filter>>
|
||||
* <<{upid}-get-filters>>
|
||||
|
@ -356,6 +357,7 @@ include::ml/stop-data-frame-analytics.asciidoc[]
|
|||
include::ml/evaluate-data-frame.asciidoc[]
|
||||
include::ml/explain-data-frame-analytics.asciidoc[]
|
||||
include::ml/get-trained-models.asciidoc[]
|
||||
include::ml/get-trained-models-stats.asciidoc[]
|
||||
include::ml/delete-trained-model.asciidoc[]
|
||||
include::ml/put-filter.asciidoc[]
|
||||
include::ml/get-filters.asciidoc[]
|
||||
|
|
Loading…
Reference in New Issue