[ML] Enable overall buckets aggregation at a custom bucket span (elastic/x-pack-elasticsearch#2782)

For the purpose of getting this API consumed by our UI, returning
overall buckets that match the job's largest `bucket_span` can
result in too much data. The UI only ever displays a few buckets
in the swimlane. Their span depends on the time range selected and
the screen resolution, but it will only ever be a relatively
low number.

This PR adds the ability to aggregate overall buckets in a user
specified `bucket_span`. That `bucket_span` may be equal or
greater to the largest job's `bucket_span`. The `overall_score`
of the result overall buckets is the max score of the
corresponding overall buckets with a span equal to the job's
largest `bucket_span`.

The implementation is now chunking the bucket requests
as otherwise the aggregation would fail when too many buckets
are matching.

Original commit: elastic/x-pack-elasticsearch@981f7a40e5
This commit is contained in:
Dimitris Athanasiou 2017-10-27 11:14:13 +01:00 committed by GitHub
parent e028716bec
commit c7e94b3b4c
17 changed files with 857 additions and 93 deletions

View File

@ -32,6 +32,11 @@ score in the overall bucket. Alternatively, if you set `top_n` to the number of
jobs, the `overall_score` is high only when all jobs detect anomalies in that
overall bucket.
In addition, the optional parameter `bucket_span` may be used in order
to request overall buckets that span longer than the largest job's `bucket_span`.
When set, the `overall_score` will be the max `overall_score` of the corresponding
overall buckets with a span equal to the largest job's `bucket_span`.
==== Path Parameters
`job_id`::
@ -44,6 +49,10 @@ overall bucket.
(boolean) If `false` and the `job_id` does not match any job an error will
be returned. The default value is `true`.
`bucket_span`::
(string) The span of the overall buckets. Must be greater or equal
to the largest job's `bucket_span`. Defaults to the largest job's `bucket_span`.
`end`::
(string) Returns overall buckets with timestamps earlier than this time.

View File

@ -5,7 +5,6 @@
*/
package org.elasticsearch.xpack.ml.action;
import org.apache.lucene.util.PriorityQueue;
import org.elasticsearch.ElasticsearchParseException;
import org.elasticsearch.action.Action;
import org.elasticsearch.action.ActionListener;
@ -14,7 +13,6 @@ import org.elasticsearch.action.ActionRequestBuilder;
import org.elasticsearch.action.ActionRequestValidationException;
import org.elasticsearch.action.ActionResponse;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.support.ActionFilters;
import org.elasticsearch.action.support.HandledTransportAction;
import org.elasticsearch.client.Client;
@ -38,11 +36,12 @@ import org.elasticsearch.search.aggregations.AggregationBuilder;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.metrics.max.Max;
import org.elasticsearch.search.aggregations.metrics.min.Min;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.threadpool.ThreadPool;
import org.elasticsearch.transport.TransportService;
import org.elasticsearch.xpack.ml.MachineLearning;
import org.elasticsearch.xpack.ml.action.util.QueryPage;
import org.elasticsearch.xpack.ml.job.JobManager;
import org.elasticsearch.xpack.ml.job.config.Job;
@ -50,26 +49,37 @@ import org.elasticsearch.xpack.ml.job.messages.Messages;
import org.elasticsearch.xpack.ml.job.persistence.AnomalyDetectorsIndex;
import org.elasticsearch.xpack.ml.job.persistence.BucketsQueryBuilder;
import org.elasticsearch.xpack.ml.job.persistence.JobProvider;
import org.elasticsearch.xpack.ml.job.persistence.overallbuckets.OverallBucketsAggregator;
import org.elasticsearch.xpack.ml.job.persistence.overallbuckets.OverallBucketsCollector;
import org.elasticsearch.xpack.ml.job.persistence.overallbuckets.OverallBucketsProcessor;
import org.elasticsearch.xpack.ml.job.persistence.overallbuckets.OverallBucketsProvider;
import org.elasticsearch.xpack.ml.job.results.Bucket;
import org.elasticsearch.xpack.ml.job.results.OverallBucket;
import org.elasticsearch.xpack.ml.job.results.Result;
import org.elasticsearch.xpack.ml.utils.ExceptionsHelper;
import org.elasticsearch.xpack.ml.utils.Intervals;
import org.joda.time.DateTime;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashSet;
import java.util.List;
import java.util.Objects;
import java.util.Set;
import java.util.function.LongSupplier;
/**
* <p>
* This action returns summarized bucket results over multiple jobs.
* Overall buckets have the span of the largest job's bucket_span.
* Their score is calculated by finding the max anomaly score per job
* and then averaging the top N.
* </p>
* <p>
* Overall buckets can be optionally aggregated into larger intervals
* by setting the bucket_span parameter. When that is the case, the
* overall_score is the max of the overall buckets that are within
* the interval.
* </p>
*/
public class GetOverallBucketsAction
extends Action<GetOverallBucketsAction.Request, GetOverallBucketsAction.Response, GetOverallBucketsAction.RequestBuilder> {
@ -94,6 +104,7 @@ public class GetOverallBucketsAction
public static class Request extends ActionRequest implements ToXContentObject {
public static final ParseField TOP_N = new ParseField("top_n");
public static final ParseField BUCKET_SPAN = new ParseField("bucket_span");
public static final ParseField OVERALL_SCORE = new ParseField("overall_score");
public static final ParseField EXCLUDE_INTERIM = new ParseField("exclude_interim");
public static final ParseField START = new ParseField("start");
@ -105,6 +116,7 @@ public class GetOverallBucketsAction
static {
PARSER.declareString((request, jobId) -> request.jobId = jobId, Job.ID);
PARSER.declareInt(Request::setTopN, TOP_N);
PARSER.declareString(Request::setBucketSpan, BUCKET_SPAN);
PARSER.declareDouble(Request::setOverallScore, OVERALL_SCORE);
PARSER.declareBoolean(Request::setExcludeInterim, EXCLUDE_INTERIM);
PARSER.declareString((request, startTime) -> request.setStart(parseDateOrThrow(
@ -135,6 +147,7 @@ public class GetOverallBucketsAction
private String jobId;
private int topN = 1;
private TimeValue bucketSpan;
private double overallScore = 0.0;
private boolean excludeInterim = false;
private Long start;
@ -163,6 +176,18 @@ public class GetOverallBucketsAction
this.topN = topN;
}
public TimeValue getBucketSpan() {
return bucketSpan;
}
public void setBucketSpan(TimeValue bucketSpan) {
this.bucketSpan = bucketSpan;
}
public void setBucketSpan(String bucketSpan) {
this.bucketSpan = TimeValue.parseTimeValue(bucketSpan, BUCKET_SPAN.getPreferredName());
}
public double getOverallScore() {
return overallScore;
}
@ -221,6 +246,7 @@ public class GetOverallBucketsAction
super.readFrom(in);
jobId = in.readString();
topN = in.readVInt();
bucketSpan = in.readOptionalWriteable(TimeValue::new);
overallScore = in.readDouble();
excludeInterim = in.readBoolean();
start = in.readOptionalLong();
@ -233,6 +259,7 @@ public class GetOverallBucketsAction
super.writeTo(out);
out.writeString(jobId);
out.writeVInt(topN);
out.writeOptionalWriteable(bucketSpan);
out.writeDouble(overallScore);
out.writeBoolean(excludeInterim);
out.writeOptionalLong(start);
@ -245,6 +272,9 @@ public class GetOverallBucketsAction
builder.startObject();
builder.field(Job.ID.getPreferredName(), jobId);
builder.field(TOP_N.getPreferredName(), topN);
if (bucketSpan != null) {
builder.field(BUCKET_SPAN.getPreferredName(), bucketSpan.getStringRep());
}
builder.field(OVERALL_SCORE.getPreferredName(), overallScore);
builder.field(EXCLUDE_INTERIM.getPreferredName(), excludeInterim);
if (start != null) {
@ -260,7 +290,7 @@ public class GetOverallBucketsAction
@Override
public int hashCode() {
return Objects.hash(jobId, topN, overallScore, excludeInterim, start, end, allowNoJobs);
return Objects.hash(jobId, topN, bucketSpan, overallScore, excludeInterim, start, end, allowNoJobs);
}
@Override
@ -274,6 +304,7 @@ public class GetOverallBucketsAction
Request that = (Request) other;
return Objects.equals(jobId, that.jobId) &&
this.topN == that.topN &&
Objects.equals(bucketSpan, that.bucketSpan) &&
this.excludeInterim == that.excludeInterim &&
this.overallScore == that.overallScore &&
Objects.equals(start, that.start) &&
@ -301,6 +332,10 @@ public class GetOverallBucketsAction
this.overallBuckets = overallBuckets;
}
public QueryPage<OverallBucket> getOverallBuckets() {
return overallBuckets;
}
@Override
public void readFrom(StreamInput in) throws IOException {
super.readFrom(in);
@ -346,6 +381,9 @@ public class GetOverallBucketsAction
public static class TransportAction extends HandledTransportAction<Request, Response> {
private static final String EARLIEST_TIME = "earliest_time";
private static final String LATEST_TIME = "latest_time";
private final Client client;
private final ClusterService clusterService;
private final JobManager jobManager;
@ -368,113 +406,192 @@ public class GetOverallBucketsAction
return;
}
List<String> indices = new ArrayList<>();
TimeValue maxBucketSpan = TimeValue.ZERO;
for (Job job : jobsPage.results()) {
indices.add(AnomalyDetectorsIndex.jobResultsAliasedName(job.getId()));
TimeValue bucketSpan = job.getAnalysisConfig().getBucketSpan();
if (maxBucketSpan.compareTo(bucketSpan) < 0) {
maxBucketSpan = bucketSpan;
// As computing and potentially aggregating overall buckets might take a while,
// we run in a different thread to avoid blocking the network thread.
threadPool.executor(MachineLearning.UTILITY_THREAD_POOL_NAME).execute(() -> {
try {
getOverallBuckets(request, jobsPage.results(), listener);
} catch (Exception e) {
listener.onFailure(e);
}
}
final long maxBucketSpanSeconds = maxBucketSpan.seconds();
});
}
SearchRequest searchRequest = buildSearchRequest(request, maxBucketSpan.millis(), indices);
client.search(searchRequest, ActionListener.wrap(searchResponse -> {
List<OverallBucket> overallBuckets = computeOverallBuckets(request, maxBucketSpanSeconds, searchResponse);
private void getOverallBuckets(Request request, List<Job> jobs, ActionListener<Response> listener) {
JobsContext jobsContext = JobsContext.build(jobs, request);
ActionListener<List<OverallBucket>> overallBucketsListener = ActionListener.wrap(overallBuckets -> {
listener.onResponse(new Response(new QueryPage<>(overallBuckets, overallBuckets.size(), OverallBucket.RESULTS_FIELD)));
}, listener::onFailure);
ActionListener<ChunkedBucketSearcher> chunkedBucketSearcherListener = ActionListener.wrap(searcher -> {
if (searcher == null) {
listener.onResponse(new Response());
return;
}
searcher.searchAndComputeOverallBuckets(overallBucketsListener);
}, listener::onFailure);
OverallBucketsProvider overallBucketsProvider = new OverallBucketsProvider(jobsContext.maxBucketSpan, request.getTopN(),
request.getOverallScore());
OverallBucketsProcessor overallBucketsProcessor = requiresAggregation(request, jobsContext.maxBucketSpan) ?
new OverallBucketsAggregator(request.getBucketSpan()): new OverallBucketsCollector();
initChunkedBucketSearcher(request, jobsContext, overallBucketsProvider, overallBucketsProcessor, chunkedBucketSearcherListener);
}
private static boolean requiresAggregation(Request request, TimeValue maxBucketSpan) {
return request.getBucketSpan() != null && !request.getBucketSpan().equals(maxBucketSpan);
}
private static void checkValidBucketSpan(TimeValue bucketSpan, TimeValue maxBucketSpan) {
if (bucketSpan != null && bucketSpan.compareTo(maxBucketSpan) < 0) {
throw ExceptionsHelper.badRequestException("Param [{}] must be greater or equal to the max bucket_span [{}]",
Request.BUCKET_SPAN, maxBucketSpan.getStringRep());
}
}
private void initChunkedBucketSearcher(Request request, JobsContext jobsContext, OverallBucketsProvider overallBucketsProvider,
OverallBucketsProcessor overallBucketsProcessor,
ActionListener<ChunkedBucketSearcher> listener) {
long maxBucketSpanMillis = jobsContext.maxBucketSpan.millis();
SearchRequest searchRequest = buildSearchRequest(request.getStart(), request.getEnd(), request.isExcludeInterim(),
maxBucketSpanMillis, jobsContext.indices);
searchRequest.source().aggregation(AggregationBuilders.min(EARLIEST_TIME).field(Result.TIMESTAMP.getPreferredName()));
searchRequest.source().aggregation(AggregationBuilders.max(LATEST_TIME).field(Result.TIMESTAMP.getPreferredName()));
client.search(searchRequest, ActionListener.wrap(searchResponse -> {
long totalHits = searchResponse.getHits().getTotalHits();
if (totalHits > 0) {
Aggregations aggregations = searchResponse.getAggregations();
Min min = aggregations.get(EARLIEST_TIME);
long earliestTime = Intervals.alignToFloor((long) min.getValue(), maxBucketSpanMillis);
Max max = aggregations.get(LATEST_TIME);
long latestTime = Intervals.alignToCeil((long) max.getValue() + 1, maxBucketSpanMillis);
listener.onResponse(new ChunkedBucketSearcher(jobsContext, earliestTime, latestTime, request.isExcludeInterim(),
overallBucketsProvider, overallBucketsProcessor));
} else {
listener.onResponse(null);
}
}, listener::onFailure));
}
private static SearchRequest buildSearchRequest(Request request, long bucketSpanMillis, List<String> indices) {
String startTime = request.getStart() == null ? null : String.valueOf(
Intervals.alignToCeil(request.getStart(), bucketSpanMillis));
String endTime = request.getEnd() == null ? null : String.valueOf(Intervals.alignToFloor(request.getEnd(), bucketSpanMillis));
private static class JobsContext {
private final int jobCount;
private final String[] indices;
private final TimeValue maxBucketSpan;
private JobsContext(int jobCount, String[] indices, TimeValue maxBucketSpan) {
this.jobCount = jobCount;
this.indices = indices;
this.maxBucketSpan = maxBucketSpan;
}
private static JobsContext build(List<Job> jobs, Request request) {
Set<String> indices = new HashSet<>();
TimeValue maxBucketSpan = TimeValue.ZERO;
for (Job job : jobs) {
indices.add(AnomalyDetectorsIndex.jobResultsAliasedName(job.getId()));
TimeValue bucketSpan = job.getAnalysisConfig().getBucketSpan();
if (maxBucketSpan.compareTo(bucketSpan) < 0) {
maxBucketSpan = bucketSpan;
}
}
checkValidBucketSpan(request.getBucketSpan(), maxBucketSpan);
// If top_n is 1, we can use the request bucket_span in order to optimize the aggregations
if (request.getBucketSpan() != null && (request.getTopN() == 1 || jobs.size() <= 1)) {
maxBucketSpan = request.getBucketSpan();
}
return new JobsContext(jobs.size(), indices.toArray(new String[indices.size()]), maxBucketSpan);
}
}
private class ChunkedBucketSearcher {
private static final int BUCKETS_PER_CHUNK = 1000;
private static final int MAX_RESULT_COUNT = 10000;
private final String[] indices;
private final long maxBucketSpanMillis;
private final boolean excludeInterim;
private final long chunkMillis;
private final long endTime;
private volatile long curTime;
private final AggregationBuilder aggs;
private final OverallBucketsProvider overallBucketsProvider;
private final OverallBucketsProcessor overallBucketsProcessor;
ChunkedBucketSearcher(JobsContext jobsContext, long startTime, long endTime,
boolean excludeInterim, OverallBucketsProvider overallBucketsProvider,
OverallBucketsProcessor overallBucketsProcessor) {
this.indices = jobsContext.indices;
this.maxBucketSpanMillis = jobsContext.maxBucketSpan.millis();
this.chunkMillis = BUCKETS_PER_CHUNK * maxBucketSpanMillis;
this.endTime = endTime;
this.curTime = startTime;
this.excludeInterim = excludeInterim;
this.aggs = buildAggregations(maxBucketSpanMillis, jobsContext.jobCount);
this.overallBucketsProvider = overallBucketsProvider;
this.overallBucketsProcessor = overallBucketsProcessor;
}
void searchAndComputeOverallBuckets(ActionListener<List<OverallBucket>> listener) {
if (curTime >= endTime) {
listener.onResponse(overallBucketsProcessor.finish());
return;
}
client.search(nextSearch(), ActionListener.wrap(searchResponse -> {
Histogram histogram = searchResponse.getAggregations().get(Result.TIMESTAMP.getPreferredName());
overallBucketsProcessor.process(overallBucketsProvider.computeOverallBuckets(histogram));
if (overallBucketsProcessor.size() > MAX_RESULT_COUNT) {
listener.onFailure(ExceptionsHelper.badRequestException("Unable to return more than [{}] results; please use " +
"parameters [{}] and [{}] to limit the time range", MAX_RESULT_COUNT, Request.START, Request.END));
return;
}
searchAndComputeOverallBuckets(listener);
}, listener::onFailure));
}
SearchRequest nextSearch() {
long curEnd = Math.min(curTime + chunkMillis, endTime);
logger.debug("Search for buckets in: [{}, {})", curTime, curEnd);
SearchRequest searchRequest = buildSearchRequest(curTime, curEnd, excludeInterim, maxBucketSpanMillis, indices);
searchRequest.source().aggregation(aggs);
curTime += chunkMillis;
return searchRequest;
}
}
private static SearchRequest buildSearchRequest(Long start, Long end, boolean excludeInterim, long bucketSpanMillis,
String[] indices) {
String startTime = start == null ? null : String.valueOf(Intervals.alignToCeil(start, bucketSpanMillis));
String endTime = end == null ? null : String.valueOf(Intervals.alignToFloor(end, bucketSpanMillis));
SearchSourceBuilder searchSourceBuilder = new BucketsQueryBuilder()
.size(0)
.includeInterim(request.isExcludeInterim() == false)
.includeInterim(excludeInterim == false)
.start(startTime)
.end(endTime)
.build();
searchSourceBuilder.aggregation(buildAggregations(bucketSpanMillis));
SearchRequest searchRequest = new SearchRequest(indices.toArray(new String[indices.size()]));
SearchRequest searchRequest = new SearchRequest(indices);
searchRequest.indicesOptions(JobProvider.addIgnoreUnavailable(SearchRequest.DEFAULT_INDICES_OPTIONS));
searchRequest.source(searchSourceBuilder);
return searchRequest;
}
private static AggregationBuilder buildAggregations(long bucketSpanMillis) {
private static AggregationBuilder buildAggregations(long maxBucketSpanMillis, int jobCount) {
AggregationBuilder overallScoreAgg = AggregationBuilders.max(OverallBucket.OVERALL_SCORE.getPreferredName())
.field(Bucket.ANOMALY_SCORE.getPreferredName());
AggregationBuilder jobsAgg = AggregationBuilders.terms(Job.ID.getPreferredName())
.field(Job.ID.getPreferredName()).subAggregation(overallScoreAgg);
.field(Job.ID.getPreferredName()).size(jobCount).subAggregation(overallScoreAgg);
AggregationBuilder interimAgg = AggregationBuilders.max(Result.IS_INTERIM.getPreferredName())
.field(Result.IS_INTERIM.getPreferredName());
return AggregationBuilders.dateHistogram(Result.TIMESTAMP.getPreferredName())
.field(Result.TIMESTAMP.getPreferredName())
.interval(bucketSpanMillis)
.interval(maxBucketSpanMillis)
.subAggregation(jobsAgg)
.subAggregation(interimAgg);
}
private List<OverallBucket> computeOverallBuckets(Request request, long bucketSpanSeconds, SearchResponse searchResponse) {
List<OverallBucket> overallBuckets = new ArrayList<>();
Histogram histogram = searchResponse.getAggregations().get(Result.TIMESTAMP.getPreferredName());
for (Histogram.Bucket histogramBucket : histogram.getBuckets()) {
Aggregations histogramBucketAggs = histogramBucket.getAggregations();
Terms jobsAgg = histogramBucketAggs.get(Job.ID.getPreferredName());
int jobsCount = jobsAgg.getBuckets().size();
int topN = Math.min(request.getTopN(), jobsCount);
List<OverallBucket.JobInfo> jobs = new ArrayList<>(jobsCount);
TopNScores topNScores = new TopNScores(topN);
for (Terms.Bucket jobsBucket : jobsAgg.getBuckets()) {
Max maxScore = jobsBucket.getAggregations().get(OverallBucket.OVERALL_SCORE.getPreferredName());
topNScores.insertWithOverflow(maxScore.getValue());
jobs.add(new OverallBucket.JobInfo((String) jobsBucket.getKey(), maxScore.getValue()));
}
double overallScore = topNScores.overallScore();
if (overallScore < request.getOverallScore()) {
continue;
}
Max interimAgg = histogramBucketAggs.get(Result.IS_INTERIM.getPreferredName());
boolean isInterim = interimAgg.getValue() > 0;
if (request.isExcludeInterim() && isInterim) {
continue;
}
overallBuckets.add(new OverallBucket(getHistogramBucketTimestamp(histogramBucket),
bucketSpanSeconds, overallScore, jobs, isInterim));
}
return overallBuckets;
}
private static Date getHistogramBucketTimestamp(Histogram.Bucket bucket) {
DateTime bucketTimestamp = (DateTime) bucket.getKey();
return new Date(bucketTimestamp.getMillis());
}
static class TopNScores extends PriorityQueue<Double> {
TopNScores(int n) {
super(n, false);
}
@Override
protected boolean lessThan(Double a, Double b) {
return a < b;
}
double overallScore() {
double overallScore = 0.0;
for (double score : this) {
overallScore += score;
}
return size() > 0 ? overallScore / size() : 0.0;
}
}
}
}

View File

@ -0,0 +1,89 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.ml.job.persistence.overallbuckets;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.xpack.ml.job.results.OverallBucket;
import org.elasticsearch.xpack.ml.utils.Intervals;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
public class OverallBucketsAggregator implements OverallBucketsProcessor {
private final long bucketSpanSeconds;
private final long bucketSpanMillis;
private double maxOverallScore = 0.0;
private Map<String, Double> maxScoreByJob = new TreeMap<>();
private boolean isInterim = false;
private Long startTime;
private final List<OverallBucket> aggregated = new ArrayList<>();
public OverallBucketsAggregator(TimeValue bucketSpan) {
bucketSpanSeconds = bucketSpan.seconds();
bucketSpanMillis = bucketSpan.millis();
}
@Override
public synchronized void process(List<OverallBucket> buckets) {
if (buckets.isEmpty()) {
return;
}
if (startTime == null) {
startTime = Intervals.alignToFloor(buckets.get(0).getTimestamp().getTime(), bucketSpanMillis);
}
long bucketTime;
for (OverallBucket bucket : buckets) {
bucketTime = bucket.getTimestamp().getTime();
if (bucketTime >= startTime + bucketSpanMillis) {
aggregated.add(outputBucket());
startNextBucket(bucketTime);
}
processBucket(bucket);
}
}
private OverallBucket outputBucket() {
List<OverallBucket.JobInfo> jobs = new ArrayList<>(maxScoreByJob.size());
maxScoreByJob.entrySet().stream().forEach(entry -> jobs.add(
new OverallBucket.JobInfo(entry.getKey(), entry.getValue())));
return new OverallBucket(new Date(startTime), bucketSpanSeconds, maxOverallScore, jobs, isInterim);
}
private void startNextBucket(long bucketTime) {
maxOverallScore = 0.0;
maxScoreByJob.clear();
isInterim = false;
startTime = Intervals.alignToFloor(bucketTime, bucketSpanMillis);
}
private void processBucket(OverallBucket bucket) {
maxOverallScore = Math.max(maxOverallScore, bucket.getOverallScore());
bucket.getJobs().stream().forEach(j -> {
double currentMax = maxScoreByJob.computeIfAbsent(j.getJobId(), k -> 0.0);
if (j.getMaxAnomalyScore() > currentMax) {
maxScoreByJob.put(j.getJobId(), j.getMaxAnomalyScore());
}
});
isInterim |= bucket.isInterim();
}
@Override
public synchronized List<OverallBucket> finish() {
if (startTime != null) {
aggregated.add(outputBucket());
}
return aggregated;
}
@Override
public synchronized int size() {
return aggregated.size();
}
}

View File

@ -0,0 +1,31 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.ml.job.persistence.overallbuckets;
import org.elasticsearch.xpack.ml.job.results.OverallBucket;
import java.util.ArrayList;
import java.util.List;
public class OverallBucketsCollector implements OverallBucketsProcessor {
private final List<OverallBucket> collected = new ArrayList<>();
@Override
public synchronized void process(List<OverallBucket> overallBuckets) {
collected.addAll(overallBuckets);
}
@Override
public synchronized List<OverallBucket> finish() {
return collected;
}
@Override
public synchronized int size() {
return collected.size();
}
}

View File

@ -0,0 +1,17 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.ml.job.persistence.overallbuckets;
import org.elasticsearch.xpack.ml.job.results.OverallBucket;
import java.util.List;
public interface OverallBucketsProcessor {
void process(List<OverallBucket> overallBuckets);
List<OverallBucket> finish();
int size();
}

View File

@ -0,0 +1,90 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.ml.job.persistence.overallbuckets;
import org.apache.lucene.util.PriorityQueue;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.metrics.max.Max;
import org.elasticsearch.xpack.ml.job.config.Job;
import org.elasticsearch.xpack.ml.job.results.OverallBucket;
import org.elasticsearch.xpack.ml.job.results.Result;
import org.joda.time.DateTime;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Set;
import java.util.TreeSet;
public class OverallBucketsProvider {
private final long maxJobBucketSpanSeconds;
private final int topN;
private final double minOverallScore;
public OverallBucketsProvider(TimeValue maxJobBucketSpan, int topN, double minOverallScore) {
this.maxJobBucketSpanSeconds = maxJobBucketSpan.seconds();
this.topN = topN;
this.minOverallScore = minOverallScore;
}
public List<OverallBucket> computeOverallBuckets(Histogram histogram) {
List<OverallBucket> overallBuckets = new ArrayList<>();
for (Histogram.Bucket histogramBucket : histogram.getBuckets()) {
Aggregations histogramBucketAggs = histogramBucket.getAggregations();
Terms jobsAgg = histogramBucketAggs.get(Job.ID.getPreferredName());
int jobsCount = jobsAgg.getBuckets().size();
int bucketTopN = Math.min(topN, jobsCount);
Set<OverallBucket.JobInfo> jobs = new TreeSet<>();
TopNScores topNScores = new TopNScores(bucketTopN);
for (Terms.Bucket jobsBucket : jobsAgg.getBuckets()) {
Max maxScore = jobsBucket.getAggregations().get(OverallBucket.OVERALL_SCORE.getPreferredName());
topNScores.insertWithOverflow(maxScore.getValue());
jobs.add(new OverallBucket.JobInfo((String) jobsBucket.getKey(), maxScore.getValue()));
}
double overallScore = topNScores.overallScore();
if (overallScore < minOverallScore) {
continue;
}
Max interimAgg = histogramBucketAggs.get(Result.IS_INTERIM.getPreferredName());
boolean isInterim = interimAgg.getValue() > 0;
overallBuckets.add(new OverallBucket(getHistogramBucketTimestamp(histogramBucket),
maxJobBucketSpanSeconds, overallScore, new ArrayList<>(jobs), isInterim));
}
return overallBuckets;
}
private static Date getHistogramBucketTimestamp(Histogram.Bucket bucket) {
DateTime bucketTimestamp = (DateTime) bucket.getKey();
return new Date(bucketTimestamp.getMillis());
}
static class TopNScores extends PriorityQueue<Double> {
TopNScores(int n) {
super(n, false);
}
@Override
protected boolean lessThan(Double a, Double b) {
return a < b;
}
double overallScore() {
double overallScore = 0.0;
for (double score : this) {
overallScore += score;
}
return size() > 0 ? overallScore / size() : 0.0;
}
}
}

View File

@ -95,6 +95,10 @@ public class OverallBucket implements ToXContentObject, Writeable {
return overallScore;
}
public List<JobInfo> getJobs() {
return jobs;
}
public boolean isInterim() {
return isInterim;
}
@ -126,7 +130,7 @@ public class OverallBucket implements ToXContentObject, Writeable {
&& this.isInterim == that.isInterim;
}
public static class JobInfo implements ToXContentObject, Writeable {
public static class JobInfo implements ToXContentObject, Writeable, Comparable<JobInfo> {
private static final ParseField MAX_ANOMALY_SCORE = new ParseField("max_anomaly_score");
@ -143,6 +147,14 @@ public class OverallBucket implements ToXContentObject, Writeable {
maxAnomalyScore = in.readDouble();
}
public String getJobId() {
return jobId;
}
public double getMaxAnomalyScore() {
return maxAnomalyScore;
}
@Override
public void writeTo(StreamOutput out) throws IOException {
out.writeString(jobId);
@ -174,5 +186,14 @@ public class OverallBucket implements ToXContentObject, Writeable {
JobInfo that = (JobInfo) other;
return Objects.equals(this.jobId, that.jobId) && this.maxAnomalyScore == that.maxAnomalyScore;
}
@Override
public int compareTo(JobInfo other) {
int result = this.jobId.compareTo(other.jobId);
if (result == 0) {
result = Double.compare(this.maxAnomalyScore, other.maxAnomalyScore);
}
return result;
}
}
}

View File

@ -44,6 +44,9 @@ public class RestGetOverallBucketsAction extends BaseRestHandler {
} else {
request = new Request(jobId);
request.setTopN(restRequest.paramAsInt(Request.TOP_N.getPreferredName(), request.getTopN()));
if (restRequest.hasParam(Request.BUCKET_SPAN.getPreferredName())) {
request.setBucketSpan(restRequest.param(Request.BUCKET_SPAN.getPreferredName()));
}
request.setOverallScore(Double.parseDouble(restRequest.param(Request.OVERALL_SCORE.getPreferredName(), "0.0")));
request.setExcludeInterim(restRequest.paramAsBoolean(Request.EXCLUDE_INTERIM.getPreferredName(), request.isExcludeInterim()));
if (restRequest.hasParam(Request.START.getPreferredName())) {

View File

@ -5,6 +5,7 @@
*/
package org.elasticsearch.xpack.ml.action;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.test.AbstractStreamableXContentTestCase;
import org.elasticsearch.xpack.ml.action.GetOverallBucketsAction.Request;
@ -18,7 +19,9 @@ public class GetOverallBucketsActionRequestTests extends AbstractStreamableXCont
if (randomBoolean()) {
request.setTopN(randomIntBetween(1, 1000));
}
request.setAllowNoJobs(randomBoolean());
if (randomBoolean()) {
request.setBucketSpan(TimeValue.timeValueSeconds(randomIntBetween(1, 1_000_000)));
}
if (randomBoolean()) {
request.setStart(randomNonNegativeLong());
}
@ -31,6 +34,7 @@ public class GetOverallBucketsActionRequestTests extends AbstractStreamableXCont
if (randomBoolean()) {
request.setEnd(randomNonNegativeLong());
}
request.setAllowNoJobs(randomBoolean());
return request;
}

View File

@ -0,0 +1,107 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.ml.integration;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.xpack.ml.action.GetBucketsAction;
import org.elasticsearch.xpack.ml.action.GetOverallBucketsAction;
import org.elasticsearch.xpack.ml.action.util.PageParams;
import org.elasticsearch.xpack.ml.job.config.AnalysisConfig;
import org.elasticsearch.xpack.ml.job.config.DataDescription;
import org.elasticsearch.xpack.ml.job.config.Detector;
import org.elasticsearch.xpack.ml.job.config.Job;
import org.junit.After;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import static org.hamcrest.Matchers.equalTo;
/**
* Tests that overall bucket results are calculated correctly
* for jobs that have many buckets.
*/
public class OverallBucketsIT extends MlNativeAutodetectIntegTestCase {
private static final String JOB_ID = "overall-buckets-test";
private static final long BUCKET_SPAN_SECONDS = 3600;
@After
public void cleanUpTest() throws Exception {
cleanUp();
}
public void test() throws Exception {
AnalysisConfig.Builder analysisConfig = new AnalysisConfig.Builder(
Collections.singletonList(new Detector.Builder("count", null).build()));
analysisConfig.setBucketSpan(TimeValue.timeValueSeconds(BUCKET_SPAN_SECONDS));
DataDescription.Builder dataDescription = new DataDescription.Builder();
dataDescription.setTimeFormat("epoch");
Job.Builder job = new Job.Builder(JOB_ID);
job.setAnalysisConfig(analysisConfig);
job.setDataDescription(dataDescription);
registerJob(job);
putJob(job);
openJob(job.getId());
long timestamp = 1483228800000L; // 2017-01-01T00:00:00Z
List<String> data = new ArrayList<>();
for (int i = 0; i < 3000; i++) {
data.add(createJsonRecord(createRecord(timestamp)));
if (i % 1000 == 0) {
data.add(createJsonRecord(createRecord(timestamp)));
data.add(createJsonRecord(createRecord(timestamp)));
data.add(createJsonRecord(createRecord(timestamp)));
}
timestamp += BUCKET_SPAN_SECONDS;
}
postData(job.getId(), data.stream().collect(Collectors.joining()));
flushJob(job.getId(), true);
closeJob(job.getId());
GetBucketsAction.Request request = new GetBucketsAction.Request(job.getId());
request.setPageParams(new PageParams(0, 3000));
assertThat(client().execute(GetBucketsAction.INSTANCE, request).actionGet().getBuckets().count(), equalTo(3000L));
{
// Check we get equal number of overall buckets on a default request
GetOverallBucketsAction.Request overallBucketsRequest = new GetOverallBucketsAction.Request(job.getId());
GetOverallBucketsAction.Response overallBucketsResponse = client().execute(
GetOverallBucketsAction.INSTANCE, overallBucketsRequest).actionGet();
assertThat(overallBucketsResponse.getOverallBuckets().count(), equalTo(3000L));
}
{
// Check overall buckets are half when the bucket_span is set to double the job bucket span
GetOverallBucketsAction.Request aggregatedOverallBucketsRequest = new GetOverallBucketsAction.Request(job.getId());
aggregatedOverallBucketsRequest.setBucketSpan(TimeValue.timeValueSeconds(2 * BUCKET_SPAN_SECONDS));
GetOverallBucketsAction.Response aggregatedOverallBucketsResponse = client().execute(
GetOverallBucketsAction.INSTANCE, aggregatedOverallBucketsRequest).actionGet();
assertThat(aggregatedOverallBucketsResponse.getOverallBuckets().count(), equalTo(1500L));
}
{
// Check overall score filtering works when chunking takes place
GetOverallBucketsAction.Request filteredOverallBucketsRequest = new GetOverallBucketsAction.Request(job.getId());
filteredOverallBucketsRequest.setOverallScore(0.1);
GetOverallBucketsAction.Response filteredOverallBucketsResponse = client().execute(
GetOverallBucketsAction.INSTANCE, filteredOverallBucketsRequest).actionGet();
assertThat(filteredOverallBucketsResponse.getOverallBuckets().count(), equalTo(2L));
}
}
private static Map<String, Object> createRecord(long timestamp) {
Map<String, Object> record = new HashMap<>();
record.put("time", timestamp);
return record;
}
}

View File

@ -0,0 +1,88 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.ml.job.persistence.overallbuckets;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xpack.ml.job.results.OverallBucket;
import org.elasticsearch.xpack.ml.job.results.OverallBucket.JobInfo;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Date;
import java.util.List;
import static org.hamcrest.Matchers.contains;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.is;
public class OverallBucketsAggregatorTests extends ESTestCase {
public void testProcess_GivenEmpty() {
OverallBucketsAggregator aggregator = new OverallBucketsAggregator(TimeValue.timeValueHours(1));
aggregator.process(Collections.emptyList());
List<OverallBucket> aggregated = aggregator.finish();
assertThat(aggregated.isEmpty(), is(true));
}
public void testProcess_GivenAggSpanIsTwiceTheBucketSpan() {
// Monday, October 16, 2017 12:00:00 AM UTC
long startTime = 1508112000000L;
List<OverallBucket> rawBuckets1 = new ArrayList<>();
List<OverallBucket> rawBuckets2 = new ArrayList<>();
rawBuckets1.add(new OverallBucket(new Date(startTime), 3600L, 10.0,
Arrays.asList(new OverallBucket.JobInfo("job_1", 10.0),
new OverallBucket.JobInfo("job_2", 6.0)),
false));
rawBuckets1.add(new OverallBucket(new Date(startTime + TimeValue.timeValueHours(1).millis()), 3600L, 20.0,
Arrays.asList(new JobInfo("job_1", 20.0), new JobInfo("job_2", 2.0)),
false));
rawBuckets1.add(new OverallBucket(new Date(startTime + TimeValue.timeValueHours(2).millis()), 3600L, 30.0,
Arrays.asList(new JobInfo("job_1", 30.0), new JobInfo("job_2", 7.0)),
false));
rawBuckets1.add(new OverallBucket(new Date(startTime + TimeValue.timeValueHours(3).millis()), 3600L, 40.0,
Arrays.asList(new JobInfo("job_1", 10.0), new JobInfo("job_2", 40.0)),
false));
rawBuckets1.add(new OverallBucket(new Date(startTime + TimeValue.timeValueHours(4).millis()), 3600L, 50.0,
Collections.singletonList(new JobInfo("job_1", 50.0)), false));
rawBuckets1.add(new OverallBucket(new Date(startTime + TimeValue.timeValueHours(5).millis()), 3600L, 60.0,
Collections.singletonList(new JobInfo("job_1", 60.0)), true));
rawBuckets1.add(new OverallBucket(new Date(startTime + TimeValue.timeValueHours(6).millis()), 3600L, 70.0,
Arrays.asList(new JobInfo("job_1", 70.0), new JobInfo("job_2", 0.0)),
true));
TimeValue bucketSpan = TimeValue.timeValueHours(2);
OverallBucketsAggregator aggregator = new OverallBucketsAggregator(bucketSpan);
aggregator.process(rawBuckets1);
aggregator.process(rawBuckets2);
List<OverallBucket> aggregated = aggregator.finish();
assertThat(aggregated.size(), equalTo(4));
assertThat(aggregated.get(0).getTimestamp().getTime(), equalTo(startTime));
assertThat(aggregated.get(0).getOverallScore(), equalTo(20.0));
assertThat(aggregated.get(0).getJobs(), contains(new JobInfo("job_1", 20.0),
new JobInfo("job_2", 6.0)));
assertThat(aggregated.get(0).isInterim(), is(false));
assertThat(aggregated.get(1).getTimestamp().getTime(), equalTo(startTime + bucketSpan.millis()));
assertThat(aggregated.get(1).getOverallScore(), equalTo(40.0));
assertThat(aggregated.get(1).getJobs(), contains(new JobInfo("job_1", 30.0),
new JobInfo("job_2", 40.0)));
assertThat(aggregated.get(1).isInterim(), is(false));
assertThat(aggregated.get(2).getTimestamp().getTime(), equalTo(startTime + 2 * bucketSpan.millis()));
assertThat(aggregated.get(2).getOverallScore(), equalTo(60.0));
assertThat(aggregated.get(2).getJobs().size(), equalTo(1));
assertThat(aggregated.get(2).getJobs(), contains(new JobInfo("job_1", 60.0)));
assertThat(aggregated.get(2).isInterim(), is(true));
assertThat(aggregated.get(3).getTimestamp().getTime(), equalTo(startTime + 3 * bucketSpan.millis()));
assertThat(aggregated.get(3).getOverallScore(), equalTo(70.0));
assertThat(aggregated.get(3).getJobs(), contains(new JobInfo("job_1", 70.0),
new JobInfo("job_2", 0.0)));
assertThat(aggregated.get(3).isInterim(), is(true));
}
}

View File

@ -0,0 +1,39 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.ml.job.persistence.overallbuckets;
import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xpack.ml.job.results.OverallBucket;
import java.util.Arrays;
import java.util.Collections;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.is;
import static org.mockito.Mockito.mock;
public class OverallBucketsCollectorTests extends ESTestCase {
public void testProcess_GivenEmpty() {
OverallBucketsCollector collector = new OverallBucketsCollector();
collector.process(Collections.emptyList());
assertThat(collector.finish().isEmpty(), is(true));
}
public void testProcess_GivenTwoBatches() {
OverallBucket b1 = mock(OverallBucket.class);
OverallBucket b2 = mock(OverallBucket.class);
OverallBucket b3 = mock(OverallBucket.class);
OverallBucket b4 = mock(OverallBucket.class);
OverallBucket b5 = mock(OverallBucket.class);
OverallBucketsCollector collector = new OverallBucketsCollector();
collector.process(Arrays.asList(b1, b2, b3));
collector.process(Arrays.asList(b4, b5));
assertThat(collector.finish(), equalTo(Arrays.asList(b1, b2, b3, b4, b5)));
}
}

View File

@ -3,14 +3,14 @@
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.ml.action;
package org.elasticsearch.xpack.ml.job.persistence.overallbuckets;
import org.elasticsearch.test.ESTestCase;
import org.elasticsearch.xpack.ml.action.GetOverallBucketsAction.TransportAction.TopNScores;
import org.elasticsearch.xpack.ml.job.persistence.overallbuckets.OverallBucketsProvider.TopNScores;
import static org.hamcrest.Matchers.equalTo;
public class GetOverallBucketsActionTests extends ESTestCase {
public class OverallBucketsProviderTests extends ESTestCase {
public void testTopNScores() {
TopNScores topNScores = new TopNScores(3);

View File

@ -0,0 +1,49 @@
/*
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
* or more contributor license agreements. Licensed under the Elastic License;
* you may not use this file except in compliance with the Elastic License.
*/
package org.elasticsearch.xpack.ml.job.results;
import org.elasticsearch.common.io.stream.Writeable;
import org.elasticsearch.test.AbstractWireSerializingTestCase;
import org.elasticsearch.xpack.ml.job.config.JobTests;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.lessThan;
public class OverallBucketTests extends AbstractWireSerializingTestCase<OverallBucket> {
@Override
protected OverallBucket createTestInstance() {
int jobCount = randomIntBetween(0, 10);
List<OverallBucket.JobInfo> jobs = new ArrayList<>(jobCount);
for (int i = 0; i < jobCount; ++i) {
jobs.add(new OverallBucket.JobInfo(JobTests.randomValidJobId(), randomDoubleBetween(0.0, 100.0, true)));
}
return new OverallBucket(new Date(randomNonNegativeLong()),
randomIntBetween(60, 24 * 3600),
randomDoubleBetween(0.0, 100.0, true),
jobs,
randomBoolean());
}
@Override
protected Writeable.Reader<OverallBucket> instanceReader() {
return OverallBucket::new;
}
public void testCompareTo() {
OverallBucket.JobInfo jobInfo1 = new OverallBucket.JobInfo("aaa", 1.0);
OverallBucket.JobInfo jobInfo2 = new OverallBucket.JobInfo("aaa", 3.0);
OverallBucket.JobInfo jobInfo3 = new OverallBucket.JobInfo("bbb", 1.0);
assertThat(jobInfo1.compareTo(jobInfo1), equalTo(0));
assertThat(jobInfo1.compareTo(jobInfo2), lessThan(0));
assertThat(jobInfo1.compareTo(jobInfo3), lessThan(0));
assertThat(jobInfo2.compareTo(jobInfo3), lessThan(0));
}
}

View File

@ -19,6 +19,10 @@
"type": "int",
"description": "The number of top job bucket scores to be used in the overall_score calculation"
},
"bucket_span": {
"type": "string",
"description": "The span of the overall buckets. Defaults to the longest job bucket_span"
},
"overall_score": {
"type": "double",
"description": "Returns overall buckets with overall scores higher than this value"
@ -37,7 +41,6 @@
},
"allow_no_jobs": {
"type": "boolean",
"required": false,
"description": "Whether to ignore if a wildcard expression matches no jobs. (This includes `_all` string or when no jobs have been specified)"
}
}

View File

@ -518,3 +518,99 @@ setup:
xpack.ml.get_overall_buckets:
job_id: "jobs-get-result-overall-buckets-*"
end: "invalid"
---
"Test overall buckets given bucket_span":
- do:
xpack.ml.get_overall_buckets:
job_id: "jobs-get-result-overall-buckets-*"
bucket_span: "2h"
- match: { count: 2 }
- match: { overall_buckets.0.timestamp: 1464739200000 }
- match: { overall_buckets.0.bucket_span: 7200 }
- match: { overall_buckets.0.overall_score: 30.0 }
- length: { overall_buckets.0.jobs: 3}
- match: {overall_buckets.0.jobs.0.job_id: jobs-get-result-overall-buckets-17 }
- match: {overall_buckets.0.jobs.0.max_anomaly_score: 0.0 }
- match: {overall_buckets.0.jobs.1.job_id: jobs-get-result-overall-buckets-30 }
- match: {overall_buckets.0.jobs.1.max_anomaly_score: 0.0 }
- match: {overall_buckets.0.jobs.2.job_id: jobs-get-result-overall-buckets-60 }
- match: {overall_buckets.0.jobs.2.max_anomaly_score: 30.0 }
- match: { overall_buckets.0.is_interim: false }
- match: { overall_buckets.0.result_type: overall_bucket }
- match: { overall_buckets.1.timestamp: 1464746400000 }
- match: { overall_buckets.1.bucket_span: 7200 }
- match: { overall_buckets.1.overall_score: 60.0 }
- length: { overall_buckets.1.jobs: 3}
- match: {overall_buckets.1.jobs.0.job_id: jobs-get-result-overall-buckets-17 }
- match: {overall_buckets.1.jobs.0.max_anomaly_score: 60.0 }
- match: {overall_buckets.1.jobs.1.job_id: jobs-get-result-overall-buckets-30 }
- match: {overall_buckets.1.jobs.1.max_anomaly_score: 40.0 }
- match: {overall_buckets.1.jobs.2.job_id: jobs-get-result-overall-buckets-60 }
- match: {overall_buckets.1.jobs.2.max_anomaly_score: 20.0 }
- match: { overall_buckets.1.is_interim: true }
- match: { overall_buckets.1.result_type: overall_bucket }
---
"Test overall buckets given bucket_span and top_n is 2":
- do:
xpack.ml.get_overall_buckets:
job_id: "jobs-get-result-overall-buckets-*"
top_n: 2
bucket_span: "2h"
- match: { count: 2 }
- match: { overall_buckets.0.timestamp: 1464739200000 }
- match: { overall_buckets.0.bucket_span: 7200 }
- match: { overall_buckets.0.overall_score: 30.0 }
- length: { overall_buckets.0.jobs: 3}
- match: {overall_buckets.0.jobs.0.job_id: jobs-get-result-overall-buckets-17 }
- match: {overall_buckets.0.jobs.0.max_anomaly_score: 0.0 }
- match: {overall_buckets.0.jobs.1.job_id: jobs-get-result-overall-buckets-30 }
- match: {overall_buckets.0.jobs.1.max_anomaly_score: 0.0 }
- match: {overall_buckets.0.jobs.2.job_id: jobs-get-result-overall-buckets-60 }
- match: {overall_buckets.0.jobs.2.max_anomaly_score: 30.0 }
- match: { overall_buckets.0.is_interim: false }
- match: { overall_buckets.0.result_type: overall_bucket }
- match: { overall_buckets.1.timestamp: 1464746400000 }
- match: { overall_buckets.1.bucket_span: 7200 }
- match: { overall_buckets.1.overall_score: 50.0 }
- length: { overall_buckets.1.jobs: 3}
- match: {overall_buckets.1.jobs.0.job_id: jobs-get-result-overall-buckets-17 }
- match: {overall_buckets.1.jobs.0.max_anomaly_score: 60.0 }
- match: {overall_buckets.1.jobs.1.job_id: jobs-get-result-overall-buckets-30 }
- match: {overall_buckets.1.jobs.1.max_anomaly_score: 40.0 }
- match: {overall_buckets.1.jobs.2.job_id: jobs-get-result-overall-buckets-60 }
- match: {overall_buckets.1.jobs.2.max_anomaly_score: 20.0 }
- match: { overall_buckets.1.is_interim: true }
- match: { overall_buckets.1.result_type: overall_bucket }
---
"Test overall buckets given bucket_span and overall_score filter":
- do:
xpack.ml.get_overall_buckets:
job_id: "jobs-get-result-overall-buckets-*"
bucket_span: "2h"
overall_score: "41.0"
- match: { count: 1 }
- match: { overall_buckets.0.timestamp: 1464746400000 }
- match: { overall_buckets.0.bucket_span: 7200 }
- match: { overall_buckets.0.overall_score: 60.0 }
- length: { overall_buckets.0.jobs: 3}
- match: {overall_buckets.0.jobs.0.job_id: jobs-get-result-overall-buckets-17 }
- match: {overall_buckets.0.jobs.0.max_anomaly_score: 60.0 }
- match: {overall_buckets.0.jobs.1.job_id: jobs-get-result-overall-buckets-30 }
- match: {overall_buckets.0.jobs.1.max_anomaly_score: 40.0 }
- match: {overall_buckets.0.jobs.2.job_id: jobs-get-result-overall-buckets-60 }
- match: {overall_buckets.0.jobs.2.max_anomaly_score: 20.0 }
- match: { overall_buckets.0.is_interim: true }
- match: { overall_buckets.0.result_type: overall_bucket }
---
"Test overall buckets given bucket_span is smaller than max job bucket_span":
- do:
catch: /.*Param \[bucket_span\] must be greater or equal to the max bucket_span \[60m\]*/
xpack.ml.get_overall_buckets:
job_id: "jobs-get-result-overall-buckets-*"
bucket_span: "59m"

View File

@ -52,6 +52,7 @@ integTestRunner {
'ml/jobs_get_result_overall_buckets/Test overall buckets given top_n is negative',
'ml/jobs_get_result_overall_buckets/Test overall buckets given invalid start param',
'ml/jobs_get_result_overall_buckets/Test overall buckets given invalid end param',
'ml/jobs_get_result_overall_buckets/Test overall buckets given bucket_span is smaller than max job bucket_span',
'ml/jobs_get_stats/Test get job stats given missing job',
'ml/jobs_get_stats/Test no exception on get job stats with missing index',
'ml/job_groups/Test put job with empty group',