Record method counts while profiling (#18302)

Invocation counts can be used to help judge the selectivity of individual query components in the context of the entire query.  E.g. a query may not look selective when run by itself (matches most of the index), but when run in context of a full search request, is evaluated only rarely due to execution order

Since this is modifying the base timing class, it'll enrich both query and agg profiles (as well as future profile results)
This commit is contained in:
Zachary Tong 2016-07-14 09:46:24 -04:00 committed by GitHub
parent 8fec348880
commit c950ea0023
3 changed files with 123 additions and 32 deletions

View File

@ -35,6 +35,8 @@ public abstract class AbstractProfileBreakdown<T extends Enum<T>> {
*/ */
private final long[] timings; private final long[] timings;
private final long[] counts;
/** Scratch to store the current timing type. */ /** Scratch to store the current timing type. */
private T currentTimingType; private T currentTimingType;
@ -49,6 +51,7 @@ public abstract class AbstractProfileBreakdown<T extends Enum<T>> {
public AbstractProfileBreakdown(T[] timingTypes) { public AbstractProfileBreakdown(T[] timingTypes) {
this.timingTypes = timingTypes; this.timingTypes = timingTypes;
timings = new long[timingTypes.length]; timings = new long[timingTypes.length];
counts = new long[timingTypes.length];
} }
/** /**
@ -58,6 +61,7 @@ public abstract class AbstractProfileBreakdown<T extends Enum<T>> {
public void startTime(T timing) { public void startTime(T timing) {
assert currentTimingType == null; assert currentTimingType == null;
assert scratch == 0; assert scratch == 0;
counts[timing.ordinal()] += 1;
currentTimingType = timing; currentTimingType = timing;
scratch = System.nanoTime(); scratch = System.nanoTime();
} }
@ -83,6 +87,7 @@ public abstract class AbstractProfileBreakdown<T extends Enum<T>> {
Map<String, Long> map = new HashMap<>(); Map<String, Long> map = new HashMap<>();
for (T timingType : timingTypes) { for (T timingType : timingTypes) {
map.put(timingType.toString(), timings[timingType.ordinal()]); map.put(timingType.toString(), timings[timingType.ordinal()]);
map.put(timingType.toString() + "_count", counts[timingType.ordinal()]);
} }
return Collections.unmodifiableMap(map); return Collections.unmodifiableMap(map);
} }
@ -96,5 +101,9 @@ public abstract class AbstractProfileBreakdown<T extends Enum<T>> {
for (int i = 0; i < timings.length; ++i) { for (int i = 0; i < timings.length; ++i) {
timings[i] += other.timings[i]; timings[i] += other.timings[i];
} }
assert(counts.length == other.counts.length);
for (int i = 0; i < counts.length; ++i) {
counts[i] += other.counts[i];
}
} }
} }

View File

@ -98,6 +98,13 @@ public class QueryProfilerTests extends ESTestCase {
assertThat(breakdown.get(QueryTimingType.SCORE.toString()).longValue(), greaterThan(0L)); assertThat(breakdown.get(QueryTimingType.SCORE.toString()).longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.MATCH.toString()).longValue(), equalTo(0L)); assertThat(breakdown.get(QueryTimingType.MATCH.toString()).longValue(), equalTo(0L));
assertThat(breakdown.get(QueryTimingType.CREATE_WEIGHT.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.BUILD_SCORER.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.NEXT_DOC.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.ADVANCE.toString() + "_count").longValue(), equalTo(0L));
assertThat(breakdown.get(QueryTimingType.SCORE.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.MATCH.toString() + "_count").longValue(), equalTo(0L));
long rewriteTime = profiler.getRewriteTime(); long rewriteTime = profiler.getRewriteTime();
assertThat(rewriteTime, greaterThan(0L)); assertThat(rewriteTime, greaterThan(0L));
} }
@ -117,6 +124,13 @@ public class QueryProfilerTests extends ESTestCase {
assertThat(breakdown.get(QueryTimingType.SCORE.toString()).longValue(), equalTo(0L)); assertThat(breakdown.get(QueryTimingType.SCORE.toString()).longValue(), equalTo(0L));
assertThat(breakdown.get(QueryTimingType.MATCH.toString()).longValue(), equalTo(0L)); assertThat(breakdown.get(QueryTimingType.MATCH.toString()).longValue(), equalTo(0L));
assertThat(breakdown.get(QueryTimingType.CREATE_WEIGHT.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.BUILD_SCORER.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.NEXT_DOC.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.ADVANCE.toString() + "_count").longValue(), equalTo(0L));
assertThat(breakdown.get(QueryTimingType.SCORE.toString() + "_count").longValue(), equalTo(0L));
assertThat(breakdown.get(QueryTimingType.MATCH.toString() + "_count").longValue(), equalTo(0L));
long rewriteTime = profiler.getRewriteTime(); long rewriteTime = profiler.getRewriteTime();
assertThat(rewriteTime, greaterThan(0L)); assertThat(rewriteTime, greaterThan(0L));
} }
@ -152,6 +166,13 @@ public class QueryProfilerTests extends ESTestCase {
assertThat(breakdown.get(QueryTimingType.SCORE.toString()).longValue(), equalTo(0L)); assertThat(breakdown.get(QueryTimingType.SCORE.toString()).longValue(), equalTo(0L));
assertThat(breakdown.get(QueryTimingType.MATCH.toString()).longValue(), greaterThan(0L)); assertThat(breakdown.get(QueryTimingType.MATCH.toString()).longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.CREATE_WEIGHT.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.BUILD_SCORER.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.NEXT_DOC.toString() + "_count").longValue(), greaterThan(0L));
assertThat(breakdown.get(QueryTimingType.ADVANCE.toString() + "_count").longValue(), equalTo(0L));
assertThat(breakdown.get(QueryTimingType.SCORE.toString() + "_count").longValue(), equalTo(0L));
assertThat(breakdown.get(QueryTimingType.MATCH.toString() + "_count").longValue(), greaterThan(0L));
long rewriteTime = profiler.getRewriteTime(); long rewriteTime = profiler.getRewriteTime();
assertThat(rewriteTime, greaterThan(0L)); assertThat(rewriteTime, greaterThan(0L));

View File

@ -40,14 +40,14 @@ This will yield the following result:
"failed": 0 "failed": 0
}, },
"hits": { "hits": {
"total": 1, "total": 3,
"max_score": 1, "max_score": 1.078072,
"hits": [ ... ] <1> "hits": [ ... ] <1>
}, },
"profile": { "profile": {
"shards": [ "shards": [
{ {
"id": "[htuC6YnSSSmKFq5UBt0YMA][test][0]", "id": "[2aE02wS1R8q_QFnYu6vDVQ][test][1]",
"searches": [ "searches": [
{ {
"query": [ "query": [
@ -56,12 +56,18 @@ This will yield the following result:
"description": "message:search message:test", "description": "message:search message:test",
"time": "15.52889800ms", "time": "15.52889800ms",
"breakdown": { "breakdown": {
"score": 0, "score": 6352,
"next_doc": 24495, "score_count": 1,
"build_scorer": 1800776,
"build_scorer_count": 1,
"match": 0, "match": 0,
"create_weight": 8488388, "match_count": 0,
"build_scorer": 7016015, "create_weight": 667400,
"advance": 0 "create_weight_count": 1,
"next_doc": 10563,
"next_doc_count": 2,
"advance": 0,
"advance_count": 0
}, },
"children": [ "children": [
{ {
@ -70,11 +76,17 @@ This will yield the following result:
"time": "4.938855000ms", "time": "4.938855000ms",
"breakdown": { "breakdown": {
"score": 0, "score": 0,
"next_doc": 18332, "score_count": 0,
"build_scorer": 3230,
"build_scorer_count": 1,
"match": 0, "match": 0,
"create_weight": 2945570, "match_count": 0,
"build_scorer": 1974953, "create_weight": 415612,
"advance": 0 "create_weight_count": 1,
"next_doc": 0,
"next_doc_count": 0,
"advance": 0,
"advance_count": 0
} }
}, },
{ {
@ -82,23 +94,29 @@ This will yield the following result:
"description": "message:test", "description": "message:test",
"time": "0.5016660000ms", "time": "0.5016660000ms",
"breakdown": { "breakdown": {
"score": 0, "score": 5014,
"next_doc": 0, "score_count": 1,
"build_scorer": 1689333,
"build_scorer_count": 1,
"match": 0, "match": 0,
"create_weight": 170534, "match_count": 0,
"build_scorer": 331132, "create_weight": 166587,
"advance": 0 "create_weight_count": 1,
"next_doc": 5542,
"next_doc_count": 2,
"advance": 0,
"advance_count": 0
} }
} }
] ]
} }
], ],
"rewrite_time": 185002, "rewrite_time": 870954,
"collector": [ "collector": [
{ {
"name": "SimpleTopScoreDocCollector", "name": "SimpleTopScoreDocCollector",
"reason": "search_top_hits", "reason": "search_top_hits",
"time": "2.206529000ms" "time": "0.009783000000ms"
} }
] ]
} }
@ -121,11 +139,11 @@ First, the overall structure of the profile response is as follows:
"profile": { "profile": {
"shards": [ "shards": [
{ {
"id": "[htuC6YnSSSmKFq5UBt0YMA][test][0]", <1> "id": "[2aE02wS1R8q_QFnYu6vDVQ][test][1]", <1>
"searches": [ "searches": [
{ {
"query": [...], <2> "query": [...], <2>
"rewrite_time": 185002, <3> "rewrite_time": 870954, <3>
"collector": [...] <4> "collector": [...] <4>
} }
], ],
@ -227,13 +245,18 @@ The `"breakdown"` component lists detailed timing statistics about low-level Luc
[source,js] [source,js]
-------------------------------------------------- --------------------------------------------------
"breakdown": { "breakdown": {
"score": 0, "score": 5014,
"next_doc": 24495, "score_count": 1,
"build_scorer": 1689333,
"build_scorer_count": 1,
"match": 0, "match": 0,
"create_weight": 8488388, "match_count": 0,
"build_scorer": 7016015, "create_weight": 166587,
"advance": 0 "create_weight_count": 1,
"next_doc": 5542,
"next_doc_count": 2,
"advance": 0,
"advance_count": 0
} }
-------------------------------------------------- --------------------------------------------------
@ -305,6 +328,10 @@ The meaning of the stats are as follows:
This records the time taken to score a particular document via it's Scorer This records the time taken to score a particular document via it's Scorer
`*_count`::
Records the number of invocations of the particular method. For example, `"next_doc_count": 2,`
means the `nextDoc()` method was called on two different documents. This can be used to help judge
how selective queries are, by comparing counts between different query components.
==== `collectors` Section ==== `collectors` Section
@ -473,11 +500,17 @@ And the response:
"time": "0.4094560000ms", "time": "0.4094560000ms",
"breakdown": { "breakdown": {
"score": 0, "score": 0,
"score_count": 1,
"next_doc": 0, "next_doc": 0,
"next_doc_count": 2,
"match": 0, "match": 0,
"match_count": 0,
"create_weight": 31584, "create_weight": 31584,
"create_weight_count": 1,
"build_scorer": 377872, "build_scorer": 377872,
"build_scorer_count": 1,
"advance": 0 "advance": 0
"advance_count": 0
} }
}, },
{ {
@ -486,11 +519,17 @@ And the response:
"time": "0.3037020000ms", "time": "0.3037020000ms",
"breakdown": { "breakdown": {
"score": 0, "score": 0,
"score_count": 1,
"next_doc": 5936, "next_doc": 5936,
"next_doc_count": 2,
"match": 0, "match": 0,
"match_count": 0,
"create_weight": 185215, "create_weight": 185215,
"create_weight_count": 1,
"build_scorer": 112551, "build_scorer": 112551,
"build_scorer_count": 1,
"advance": 0 "advance": 0
"advance_count": 0
} }
} }
], ],
@ -530,11 +569,17 @@ And the response:
"time": "0.04829300000ms", "time": "0.04829300000ms",
"breakdown": { "breakdown": {
"score": 0, "score": 0,
"score_count": 1,
"next_doc": 3672, "next_doc": 3672,
"next_doc_count": 2,
"match": 0, "match": 0,
"match_count": 0,
"create_weight": 6311, "create_weight": 6311,
"create_weight_count": 1,
"build_scorer": 38310, "build_scorer": 38310,
"build_scorer_count": 1,
"advance": 0 "advance": 0
"advance_count": 0
} }
} }
], ],
@ -627,9 +672,13 @@ Which yields the following aggregation profile output
"time": "4280.456978ms", "time": "4280.456978ms",
"breakdown": { "breakdown": {
"reduce": 0, "reduce": 0,
"reduce_count": 0,
"build_aggregation": 49765, "build_aggregation": 49765,
"build_aggregation_count": 300,
"initialise": 52785, "initialise": 52785,
"collect": 3155490036 "initialize_count": 300,
"collect": 3155490036,
"collect_count": 1800
}, },
"children": [ "children": [
{ {
@ -638,9 +687,13 @@ Which yields the following aggregation profile output
"time": "1124.864392ms", "time": "1124.864392ms",
"breakdown": { "breakdown": {
"reduce": 0, "reduce": 0,
"reduce_count": 0,
"build_aggregation": 1394, "build_aggregation": 1394,
"build_aggregation_count": 150,
"initialise": 2883, "initialise": 2883,
"collect": 1124860115 "initialize_count": 150,
"collect": 1124860115,
"collect_count": 900
} }
} }
] ]
@ -666,9 +719,13 @@ The `"breakdown"` component lists detailed timing statistics about low-level Luc
-------------------------------------------------- --------------------------------------------------
"breakdown": { "breakdown": {
"reduce": 0, "reduce": 0,
"reduce_count": 0,
"build_aggregation": 49765, "build_aggregation": 49765,
"build_aggregation_count": 300,
"initialise": 52785, "initialise": 52785,
"collect": 3155490036 "initialize_count": 300,
"collect": 3155490036,
"collect_count": 1800
} }
-------------------------------------------------- --------------------------------------------------
@ -699,6 +756,10 @@ The meaning of the stats are as follows:
This is not currently used and will always report `0`. Currently aggregation profiling only times the shard level parts of the aggregation execution. Timing of the reduce phase will be added later. This is not currently used and will always report `0`. Currently aggregation profiling only times the shard level parts of the aggregation execution. Timing of the reduce phase will be added later.
`*_count`::
Records the number of invocations of the particular method. For example, `"collect_count": 2,`
means the `collect()` method was called on two different documents.
=== Profiling Considerations === Profiling Considerations
==== Performance Notes ==== Performance Notes