[ML] Add high level REST client docs for ML put job endpoint (#32843)

Relates #29827
Relates #32726
This commit is contained in:
David Roberts 2018-08-14 19:52:54 +01:00 committed by GitHub
parent 0158b59a5a
commit c985f500f4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 326 additions and 18 deletions

View File

@ -0,0 +1,121 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.client.documentation;
import org.elasticsearch.action.ActionListener;
import org.elasticsearch.action.LatchedActionListener;
import org.elasticsearch.client.ESRestHighLevelClientTestCase;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.protocol.xpack.ml.PutJobRequest;
import org.elasticsearch.protocol.xpack.ml.PutJobResponse;
import org.elasticsearch.protocol.xpack.ml.job.config.AnalysisConfig;
import org.elasticsearch.protocol.xpack.ml.job.config.DataDescription;
import org.elasticsearch.protocol.xpack.ml.job.config.Detector;
import org.elasticsearch.protocol.xpack.ml.job.config.Job;
import java.util.Collections;
import java.util.Date;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import static org.hamcrest.Matchers.greaterThan;
public class MlClientDocumentationIT extends ESRestHighLevelClientTestCase {
public void testCreateJob() throws Exception {
RestHighLevelClient client = highLevelClient();
//tag::x-pack-ml-put-job-detector
Detector.Builder detectorBuilder = new Detector.Builder()
.setFunction("sum") // <1>
.setFieldName("total") // <2>
.setDetectorDescription("Sum of total"); // <3>
//end::x-pack-ml-put-job-detector
//tag::x-pack-ml-put-job-analysis-config
List<Detector> detectors = Collections.singletonList(detectorBuilder.build()); // <1>
AnalysisConfig.Builder analysisConfigBuilder = new AnalysisConfig.Builder(detectors) // <2>
.setBucketSpan(TimeValue.timeValueMinutes(10)); // <3>
//end::x-pack-ml-put-job-analysis-config
//tag::x-pack-ml-put-job-data-description
DataDescription.Builder dataDescriptionBuilder = new DataDescription.Builder()
.setTimeField("timestamp"); // <1>
//end::x-pack-ml-put-job-data-description
{
String id = "job_1";
//tag::x-pack-ml-put-job-config
Job.Builder jobBuilder = new Job.Builder(id) // <1>
.setAnalysisConfig(analysisConfigBuilder) // <2>
.setDataDescription(dataDescriptionBuilder) // <3>
.setDescription("Total sum of requests"); // <4>
//end::x-pack-ml-put-job-config
//tag::x-pack-ml-put-job-request
PutJobRequest request = new PutJobRequest(jobBuilder.build()); // <1>
//end::x-pack-ml-put-job-request
//tag::x-pack-ml-put-job-execute
PutJobResponse response = client.machineLearning().putJob(request, RequestOptions.DEFAULT);
//end::x-pack-ml-put-job-execute
//tag::x-pack-ml-put-job-response
Date createTime = response.getResponse().getCreateTime(); // <1>
//end::x-pack-ml-put-job-response
assertThat(createTime.getTime(), greaterThan(0L));
}
{
String id = "job_2";
Job.Builder jobBuilder = new Job.Builder(id)
.setAnalysisConfig(analysisConfigBuilder)
.setDataDescription(dataDescriptionBuilder)
.setDescription("Total sum of requests");
PutJobRequest request = new PutJobRequest(jobBuilder.build());
// tag::x-pack-ml-put-job-execute-listener
ActionListener<PutJobResponse> listener = new ActionListener<PutJobResponse>() {
@Override
public void onResponse(PutJobResponse response) {
// <1>
}
@Override
public void onFailure(Exception e) {
// <2>
}
};
// end::x-pack-ml-put-job-execute-listener
// Replace the empty listener by a blocking listener in test
final CountDownLatch latch = new CountDownLatch(1);
listener = new LatchedActionListener<>(listener, latch);
// tag::x-pack-ml-put-job-execute-async
client.machineLearning().putJobAsync(request, RequestOptions.DEFAULT, listener); // <1>
// end::x-pack-ml-put-job-execute-async
assertTrue(latch.await(30L, TimeUnit.SECONDS));
}
}
}

View File

@ -0,0 +1,161 @@
[[java-rest-high-x-pack-ml-put-job]]
=== Put Job API
The Put Job API can be used to create a new {ml} job
in the cluster. The API accepts a `PutJobRequest` object
as a request and returns a `PutJobResponse`.
[[java-rest-high-x-pack-ml-put-job-request]]
==== Put Job Request
A `PutJobRequest` requires the following argument:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-put-job-request]
--------------------------------------------------
<1> The configuration of the {ml} job to create as a `Job`
[[java-rest-high-x-pack-ml-put-job-config]]
==== Job Configuration
The `Job` object contains all the details about the {ml} job
configuration.
A `Job` requires the following arguments:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-put-job-config]
--------------------------------------------------
<1> The job ID
<2> An analysis configuration
<3> A data description
<4> Optionally, a human-readable description
[[java-rest-high-x-pack-ml-put-job-analysis-config]]
==== Analysis Configuration
The analysis configuration of the {ml} job is defined in the `AnalysisConfig`.
`AnalysisConfig` reflects all the configuration
settings that can be defined using the REST API.
Using the REST API, we could define this analysis configuration:
[source,js]
--------------------------------------------------
"analysis_config" : {
"bucket_span" : "10m",
"detectors" : [
{
"detector_description" : "Sum of total",
"function" : "sum",
"field_name" : "total"
}
]
}
--------------------------------------------------
// NOTCONSOLE
Using the `AnalysisConfig` object and the high level REST client, the list
of detectors must be built first.
An example of building a `Detector` instance is as follows:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-put-job-detector]
--------------------------------------------------
<1> The function to use
<2> The field to apply the function to
<3> Optionally, a human-readable description
Then the same configuration would be:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-put-job-analysis-config]
--------------------------------------------------
<1> Create a list of detectors
<2> Pass the list of detectors to the analysis config builder constructor
<3> The bucket span
[[java-rest-high-x-pack-ml-put-job-data-description]]
==== Data Description
After defining the analysis config, the next thing to define is the
data description, using a `DataDescription` instance. `DataDescription`
reflects all the configuration settings that can be defined using the
REST API.
Using the REST API, we could define this metrics configuration:
[source,js]
--------------------------------------------------
"data_description" : {
"time_field" : "timestamp"
}
--------------------------------------------------
// NOTCONSOLE
Using the `DataDescription` object and the high level REST client, the same
configuration would be:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-put-job-data-description]
--------------------------------------------------
<1> The time field
[[java-rest-high-x-pack-ml-put-job-execution]]
==== Execution
The Put Job API can be executed through a `MachineLearningClient`
instance. Such an instance can be retrieved from a `RestHighLevelClient`
using the `machineLearning()` method:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-put-job-execute]
--------------------------------------------------
[[java-rest-high-x-pack-ml-put-job-response]]
==== Response
The returned `PutJobResponse` returns the full representation of
the new {ml} job if it has been successfully created. This will
contain the creation time and other fields initialized using
default values:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-put-job-response]
--------------------------------------------------
<1> The creation time is a field that was not passed in the `Job` object in the request
[[java-rest-high-x-pack-ml-put-job-async]]
==== Asynchronous Execution
This request can be executed asynchronously:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-put-job-execute-async]
--------------------------------------------------
<1> The `PutMlJobRequest` to execute and the `ActionListener` to use when
the execution completes
The asynchronous method does not block and returns immediately. Once it is
completed the `ActionListener` is called back using the `onResponse` method
if the execution successfully completed or using the `onFailure` method if
it failed.
A typical listener for `PutJobResponse` looks like:
["source","java",subs="attributes,callouts,macros"]
--------------------------------------------------
include-tagged::{doc-tests}/MlClientDocumentationIT.java[x-pack-ml-put-job-execute-listener]
--------------------------------------------------
<1> Called when the execution is successfully completed. The response is
provided as an argument
<2> Called in case of failure. The raised exception is provided as an argument

View File

@ -200,6 +200,14 @@ include::licensing/put-license.asciidoc[]
include::licensing/get-license.asciidoc[]
include::licensing/delete-license.asciidoc[]
== Machine Learning APIs
The Java High Level REST Client supports the following Machine Learning APIs:
* <<java-rest-high-x-pack-ml-put-job>>
include::ml/put_job.asciidoc[]
== Migration APIs
The Java High Level REST Client supports the following Migration APIs:

View File

@ -333,7 +333,7 @@ public class AnalysisConfig implements ToXContentObject {
this.multivariateByFields = analysisConfig.multivariateByFields;
}
public void setDetectors(List<Detector> detectors) {
public Builder setDetectors(List<Detector> detectors) {
Objects.requireNonNull(detectors, "[" + DETECTORS.getPreferredName() + "] must not be null");
// We always assign sequential IDs to the detectors that are correct for this analysis config
int detectorIndex = 0;
@ -344,50 +344,62 @@ public class AnalysisConfig implements ToXContentObject {
sequentialIndexDetectors.add(builder.build());
}
this.detectors = sequentialIndexDetectors;
return this;
}
public void setDetector(int detectorIndex, Detector detector) {
public Builder setDetector(int detectorIndex, Detector detector) {
detectors.set(detectorIndex, detector);
return this;
}
public void setBucketSpan(TimeValue bucketSpan) {
public Builder setBucketSpan(TimeValue bucketSpan) {
this.bucketSpan = bucketSpan;
return this;
}
public void setLatency(TimeValue latency) {
public Builder setLatency(TimeValue latency) {
this.latency = latency;
return this;
}
public void setCategorizationFieldName(String categorizationFieldName) {
public Builder setCategorizationFieldName(String categorizationFieldName) {
this.categorizationFieldName = categorizationFieldName;
return this;
}
public void setCategorizationFilters(List<String> categorizationFilters) {
public Builder setCategorizationFilters(List<String> categorizationFilters) {
this.categorizationFilters = categorizationFilters;
return this;
}
public void setCategorizationAnalyzerConfig(CategorizationAnalyzerConfig categorizationAnalyzerConfig) {
public Builder setCategorizationAnalyzerConfig(CategorizationAnalyzerConfig categorizationAnalyzerConfig) {
this.categorizationAnalyzerConfig = categorizationAnalyzerConfig;
return this;
}
public void setSummaryCountFieldName(String summaryCountFieldName) {
public Builder setSummaryCountFieldName(String summaryCountFieldName) {
this.summaryCountFieldName = summaryCountFieldName;
return this;
}
public void setInfluencers(List<String> influencers) {
public Builder setInfluencers(List<String> influencers) {
this.influencers = Objects.requireNonNull(influencers, INFLUENCERS.getPreferredName());
return this;
}
public void setOverlappingBuckets(Boolean overlappingBuckets) {
public Builder setOverlappingBuckets(Boolean overlappingBuckets) {
this.overlappingBuckets = overlappingBuckets;
return this;
}
public void setResultFinalizationWindow(Long resultFinalizationWindow) {
public Builder setResultFinalizationWindow(Long resultFinalizationWindow) {
this.resultFinalizationWindow = resultFinalizationWindow;
return this;
}
public void setMultivariateByFields(Boolean multivariateByFields) {
public Builder setMultivariateByFields(Boolean multivariateByFields) {
this.multivariateByFields = multivariateByFields;
return this;
}
public AnalysisConfig build() {

View File

@ -243,28 +243,34 @@ public class DataDescription implements ToXContentObject {
private Character fieldDelimiter;
private Character quoteCharacter;
public void setFormat(DataFormat format) {
public Builder setFormat(DataFormat format) {
dataFormat = Objects.requireNonNull(format);
return this;
}
private void setFormat(String format) {
private Builder setFormat(String format) {
setFormat(DataFormat.forString(format));
return this;
}
public void setTimeField(String fieldName) {
public Builder setTimeField(String fieldName) {
timeFieldName = Objects.requireNonNull(fieldName);
return this;
}
public void setTimeFormat(String format) {
public Builder setTimeFormat(String format) {
timeFormat = Objects.requireNonNull(format);
return this;
}
public void setFieldDelimiter(Character delimiter) {
public Builder setFieldDelimiter(Character delimiter) {
fieldDelimiter = delimiter;
return this;
}
public void setQuoteCharacter(Character value) {
public Builder setQuoteCharacter(Character value) {
quoteCharacter = value;
return this;
}
public DataDescription build() {