Speed up named queries. #18470
Named queries have a performance bug when they are used with expensive queries that need to perform a lot of work up-front like fuzzy or range queries (including with points). The reason is that they currently re-create the weight and scorer for every hit. Instead we should create weights exactly once and use a single Scorer for all documents that are on the same segment.
This commit is contained in:
parent
89a57bce5a
commit
cb2cfdd9c0
|
@ -18,11 +18,14 @@
|
|||
*/
|
||||
package org.elasticsearch.search.fetch.matchedqueries;
|
||||
|
||||
import org.apache.lucene.index.LeafReaderContext;
|
||||
import org.apache.lucene.index.ReaderUtil;
|
||||
import org.apache.lucene.search.Query;
|
||||
import org.apache.lucene.search.Scorer;
|
||||
import org.apache.lucene.search.TwoPhaseIterator;
|
||||
import org.apache.lucene.search.Weight;
|
||||
import org.apache.lucene.util.Bits;
|
||||
import org.elasticsearch.ExceptionsHelper;
|
||||
import org.elasticsearch.common.lucene.Lucene;
|
||||
import org.elasticsearch.search.SearchParseElement;
|
||||
import org.elasticsearch.search.fetch.FetchSubPhase;
|
||||
import org.elasticsearch.search.internal.InternalSearchHit;
|
||||
|
@ -31,6 +34,8 @@ import org.elasticsearch.search.internal.SearchContext.Lifetime;
|
|||
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
|
@ -48,58 +53,68 @@ public class MatchedQueriesFetchSubPhase implements FetchSubPhase {
|
|||
|
||||
@Override
|
||||
public boolean hitsExecutionNeeded(SearchContext context) {
|
||||
return false;
|
||||
return true; // we short-circuit in hitsExecute
|
||||
}
|
||||
|
||||
@Override
|
||||
public void hitsExecute(SearchContext context, InternalSearchHit[] hits) {
|
||||
}
|
||||
if (hits.length == 0) {
|
||||
return;
|
||||
}
|
||||
hits = hits.clone(); // don't modify the incoming hits
|
||||
Arrays.sort(hits, (a, b) -> Integer.compare(a.docId(), b.docId()));
|
||||
@SuppressWarnings("unchecked")
|
||||
List<String>[] matchedQueries = new List[hits.length];
|
||||
for (int i = 0; i < matchedQueries.length; ++i) {
|
||||
matchedQueries[i] = new ArrayList<>();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean hitExecutionNeeded(SearchContext context) {
|
||||
return !context.parsedQuery().namedFilters().isEmpty()
|
||||
|| (context.parsedPostFilter() !=null && !context.parsedPostFilter().namedFilters().isEmpty());
|
||||
}
|
||||
|
||||
@Override
|
||||
public void hitExecute(SearchContext context, HitContext hitContext) {
|
||||
List<String> matchedQueries = new ArrayList<>(2);
|
||||
Map<String, Query> namedQueries = new HashMap<>(context.parsedQuery().namedFilters());
|
||||
if (context.parsedPostFilter() != null) {
|
||||
namedQueries.putAll(context.parsedPostFilter().namedFilters());
|
||||
}
|
||||
|
||||
try {
|
||||
addMatchedQueries(hitContext, context.parsedQuery().namedFilters(), matchedQueries);
|
||||
|
||||
if (context.parsedPostFilter() != null) {
|
||||
addMatchedQueries(hitContext, context.parsedPostFilter().namedFilters(), matchedQueries);
|
||||
for (Map.Entry<String, Query> entry : namedQueries.entrySet()) {
|
||||
String name = entry.getKey();
|
||||
Query query = entry.getValue();
|
||||
int readerIndex = -1;
|
||||
int docBase = -1;
|
||||
Weight weight = context.searcher().createNormalizedWeight(query, false);
|
||||
Bits matchingDocs = null;
|
||||
for (int i = 0; i < hits.length; ++i) {
|
||||
InternalSearchHit hit = hits[i];
|
||||
int hitReaderIndex = ReaderUtil.subIndex(hit.docId(), context.searcher().getIndexReader().leaves());
|
||||
if (readerIndex != hitReaderIndex) {
|
||||
readerIndex = hitReaderIndex;
|
||||
LeafReaderContext ctx = context.searcher().getIndexReader().leaves().get(readerIndex);
|
||||
docBase = ctx.docBase;
|
||||
// scorers can be costly to create, so reuse them across docs of the same segment
|
||||
Scorer scorer = weight.scorer(ctx);
|
||||
matchingDocs = Lucene.asSequentialAccessBits(ctx.reader().maxDoc(), scorer);
|
||||
}
|
||||
if (matchingDocs.get(hit.docId() - docBase)) {
|
||||
matchedQueries[i].add(name);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < hits.length; ++i) {
|
||||
hits[i].matchedQueries(matchedQueries[i].toArray(new String[0]));
|
||||
}
|
||||
} catch (IOException e) {
|
||||
throw ExceptionsHelper.convertToElastic(e);
|
||||
} finally {
|
||||
SearchContext.current().clearReleasables(Lifetime.COLLECTION);
|
||||
}
|
||||
|
||||
hitContext.hit().matchedQueries(matchedQueries.toArray(new String[matchedQueries.size()]));
|
||||
}
|
||||
|
||||
private void addMatchedQueries(HitContext hitContext, Map<String, Query> namedQueries, List<String> matchedQueries) throws IOException {
|
||||
for (Map.Entry<String, Query> entry : namedQueries.entrySet()) {
|
||||
String name = entry.getKey();
|
||||
Query filter = entry.getValue();
|
||||
@Override
|
||||
public boolean hitExecutionNeeded(SearchContext context) {
|
||||
return false;
|
||||
}
|
||||
|
||||
final Weight weight = hitContext.topLevelSearcher().createNormalizedWeight(filter, false);
|
||||
final Scorer scorer = weight.scorer(hitContext.readerContext());
|
||||
if (scorer == null) {
|
||||
continue;
|
||||
}
|
||||
final TwoPhaseIterator twoPhase = scorer.twoPhaseIterator();
|
||||
if (twoPhase == null) {
|
||||
if (scorer.iterator().advance(hitContext.docId()) == hitContext.docId()) {
|
||||
matchedQueries.add(name);
|
||||
}
|
||||
} else {
|
||||
if (twoPhase.approximation().advance(hitContext.docId()) == hitContext.docId() && twoPhase.matches()) {
|
||||
matchedQueries.add(name);
|
||||
}
|
||||
}
|
||||
}
|
||||
@Override
|
||||
public void hitExecute(SearchContext context, HitContext hitContext) {
|
||||
// we do everything in hitsExecute
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue