[ML] Remove record_count from bucket results (elastic/x-pack-elasticsearch#1568)
relates elastic/x-pack-elasticsearch#1564 Original commit: elastic/x-pack-elasticsearch@0caff1a735
This commit is contained in:
parent
b284fc3c91
commit
cc96580cd6
|
@ -106,7 +106,6 @@ score and time constraints:
|
|||
"anomaly_score": 94.1706,
|
||||
"bucket_span": 300,
|
||||
"initial_anomaly_score": 94.1706,
|
||||
"record_count": 1,
|
||||
"event_count": 153,
|
||||
"is_interim": false,
|
||||
"bucket_influencers": [
|
||||
|
|
|
@ -96,9 +96,6 @@ A bucket resource has the following properties:
|
|||
(number) The amount of time, in milliseconds, that it took to analyze the
|
||||
bucket contents and calculate results.
|
||||
|
||||
`record_count`::
|
||||
(number) The number of anomaly records in this bucket.
|
||||
|
||||
`result_type`::
|
||||
(string) Internal. This value is always set to `bucket`.
|
||||
|
||||
|
|
|
@ -179,11 +179,7 @@ public class JobProvider {
|
|||
throw new RuntimeException(e);
|
||||
}
|
||||
}
|
||||
if (numFields + additionalFieldCount > fieldCountLimit) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return numFields + additionalFieldCount > fieldCountLimit;
|
||||
}
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
|
@ -421,7 +417,7 @@ public class JobProvider {
|
|||
|
||||
if (query.isExpand()) {
|
||||
Iterator<Bucket> bucketsToExpand = buckets.results().stream()
|
||||
.filter(bucket -> bucket.getRecordCount() > 0).iterator();
|
||||
.filter(bucket -> bucket.getBucketInfluencers().size() > 0).iterator();
|
||||
expandBuckets(jobId, query, buckets, bucketsToExpand, handler, errorHandler, client);
|
||||
} else {
|
||||
handler.accept(buckets);
|
||||
|
|
|
@ -24,7 +24,6 @@ import java.util.ArrayList;
|
|||
import java.util.Collections;
|
||||
import java.util.Date;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
|
||||
|
@ -74,13 +73,14 @@ public class Bucket extends ToXContentToBytes implements Writeable {
|
|||
PARSER.declareDouble(Bucket::setAnomalyScore, ANOMALY_SCORE);
|
||||
PARSER.declareDouble(Bucket::setInitialAnomalyScore, INITIAL_ANOMALY_SCORE);
|
||||
PARSER.declareBoolean(Bucket::setInterim, Result.IS_INTERIM);
|
||||
PARSER.declareInt(Bucket::setRecordCount, RECORD_COUNT);
|
||||
PARSER.declareLong(Bucket::setEventCount, EVENT_COUNT);
|
||||
PARSER.declareObjectArray(Bucket::setRecords, AnomalyRecord.PARSER, RECORDS);
|
||||
PARSER.declareObjectArray(Bucket::setBucketInfluencers, BucketInfluencer.PARSER, BUCKET_INFLUENCERS);
|
||||
PARSER.declareLong(Bucket::setProcessingTimeMs, PROCESSING_TIME_MS);
|
||||
PARSER.declareObjectArray(Bucket::setPartitionScores, PartitionScore.PARSER, PARTITION_SCORES);
|
||||
PARSER.declareString((bucket, s) -> {}, Result.RESULT_TYPE);
|
||||
// For bwc with 5.4
|
||||
PARSER.declareInt((bucket, recordCount) -> {}, RECORD_COUNT);
|
||||
}
|
||||
|
||||
private final String jobId;
|
||||
|
@ -88,7 +88,6 @@ public class Bucket extends ToXContentToBytes implements Writeable {
|
|||
private final long bucketSpan;
|
||||
private double anomalyScore;
|
||||
private double initialAnomalyScore;
|
||||
private int recordCount;
|
||||
private List<AnomalyRecord> records = new ArrayList<>();
|
||||
private long eventCount;
|
||||
private boolean isInterim;
|
||||
|
@ -108,7 +107,6 @@ public class Bucket extends ToXContentToBytes implements Writeable {
|
|||
this.bucketSpan = other.bucketSpan;
|
||||
this.anomalyScore = other.anomalyScore;
|
||||
this.initialAnomalyScore = other.initialAnomalyScore;
|
||||
this.recordCount = other.recordCount;
|
||||
this.records = new ArrayList<>(other.records);
|
||||
this.eventCount = other.eventCount;
|
||||
this.isInterim = other.isInterim;
|
||||
|
@ -123,7 +121,10 @@ public class Bucket extends ToXContentToBytes implements Writeable {
|
|||
anomalyScore = in.readDouble();
|
||||
bucketSpan = in.readLong();
|
||||
initialAnomalyScore = in.readDouble();
|
||||
recordCount = in.readInt();
|
||||
// bwc for recordCount
|
||||
if (in.getVersion().before(Version.V_5_5_0_UNRELEASED)) {
|
||||
in.readInt();
|
||||
}
|
||||
records = in.readList(AnomalyRecord::new);
|
||||
eventCount = in.readLong();
|
||||
isInterim = in.readBoolean();
|
||||
|
@ -143,7 +144,10 @@ public class Bucket extends ToXContentToBytes implements Writeable {
|
|||
out.writeDouble(anomalyScore);
|
||||
out.writeLong(bucketSpan);
|
||||
out.writeDouble(initialAnomalyScore);
|
||||
out.writeInt(recordCount);
|
||||
// bwc for recordCount
|
||||
if (out.getVersion().before(Version.V_5_5_0_UNRELEASED)) {
|
||||
out.writeInt(0);
|
||||
}
|
||||
out.writeList(records);
|
||||
out.writeLong(eventCount);
|
||||
out.writeBoolean(isInterim);
|
||||
|
@ -164,7 +168,6 @@ public class Bucket extends ToXContentToBytes implements Writeable {
|
|||
builder.field(ANOMALY_SCORE.getPreferredName(), anomalyScore);
|
||||
builder.field(BUCKET_SPAN.getPreferredName(), bucketSpan);
|
||||
builder.field(INITIAL_ANOMALY_SCORE.getPreferredName(), initialAnomalyScore);
|
||||
builder.field(RECORD_COUNT.getPreferredName(), recordCount);
|
||||
if (records.isEmpty() == false) {
|
||||
builder.field(RECORDS.getPreferredName(), records);
|
||||
}
|
||||
|
@ -223,14 +226,6 @@ public class Bucket extends ToXContentToBytes implements Writeable {
|
|||
this.initialAnomalyScore = initialAnomalyScore;
|
||||
}
|
||||
|
||||
public int getRecordCount() {
|
||||
return recordCount;
|
||||
}
|
||||
|
||||
public void setRecordCount(int recordCount) {
|
||||
this.recordCount = recordCount;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get all the anomaly records associated with this bucket.
|
||||
* The records are not part of the bucket document. They will
|
||||
|
@ -310,7 +305,7 @@ public class Bucket extends ToXContentToBytes implements Writeable {
|
|||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Objects.hash(jobId, timestamp, eventCount, initialAnomalyScore, anomalyScore, recordCount, records,
|
||||
return Objects.hash(jobId, timestamp, eventCount, initialAnomalyScore, anomalyScore, records,
|
||||
isInterim, bucketSpan, bucketInfluencers, partitionScores, processingTimeMs);
|
||||
}
|
||||
|
||||
|
@ -331,7 +326,6 @@ public class Bucket extends ToXContentToBytes implements Writeable {
|
|||
|
||||
return Objects.equals(this.jobId, that.jobId) && Objects.equals(this.timestamp, that.timestamp)
|
||||
&& (this.eventCount == that.eventCount) && (this.bucketSpan == that.bucketSpan)
|
||||
&& (this.recordCount == that.recordCount)
|
||||
&& (this.anomalyScore == that.anomalyScore) && (this.initialAnomalyScore == that.initialAnomalyScore)
|
||||
&& Objects.equals(this.records, that.records) && Objects.equals(this.isInterim, that.isInterim)
|
||||
&& Objects.equals(this.bucketInfluencers, that.bucketInfluencers)
|
||||
|
|
|
@ -65,9 +65,6 @@ public class GetBucketActionResponseTests extends AbstractStreamableTestCase<Get
|
|||
if (randomBoolean()) {
|
||||
bucket.setProcessingTimeMs(randomLong());
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
bucket.setRecordCount(randomInt());
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
int size = randomInt(10);
|
||||
List<AnomalyRecord> records = new ArrayList<>(size);
|
||||
|
|
|
@ -15,7 +15,7 @@ import org.elasticsearch.xpack.ml.job.config.Job;
|
|||
import org.elasticsearch.xpack.ml.job.results.Bucket;
|
||||
import org.junit.After;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
@ -43,7 +43,7 @@ public class UpdateInterimResultsIT extends MlNativeAutodetectIntegTestCase {
|
|||
|
||||
public void test() throws Exception {
|
||||
AnalysisConfig.Builder analysisConfig = new AnalysisConfig.Builder(
|
||||
Arrays.asList(new Detector.Builder("max", "value").build()));
|
||||
Collections.singletonList(new Detector.Builder("max", "value").build()));
|
||||
analysisConfig.setBucketSpan(TimeValue.timeValueSeconds(BUCKET_SPAN_SECONDS));
|
||||
analysisConfig.setOverlappingBuckets(true);
|
||||
DataDescription.Builder dataDescription = new DataDescription.Builder();
|
||||
|
@ -83,9 +83,7 @@ public class UpdateInterimResultsIT extends MlNativeAutodetectIntegTestCase {
|
|||
List<Bucket> firstInterimBuckets = getInterimResults(job.getId());
|
||||
assertThat(firstInterimBuckets.size(), equalTo(2));
|
||||
assertThat(firstInterimBuckets.get(0).getTimestamp().getTime(), equalTo(1400039000000L));
|
||||
assertThat(firstInterimBuckets.get(0).getRecordCount(), equalTo(0));
|
||||
assertThat(firstInterimBuckets.get(1).getTimestamp().getTime(), equalTo(1400040000000L));
|
||||
assertThat(firstInterimBuckets.get(1).getRecordCount(), equalTo(1));
|
||||
assertThat(firstInterimBuckets.get(1).getRecords().get(0).getActual().get(0), equalTo(16.0));
|
||||
});
|
||||
|
||||
|
@ -97,9 +95,7 @@ public class UpdateInterimResultsIT extends MlNativeAutodetectIntegTestCase {
|
|||
assertBusy(() -> {
|
||||
List<Bucket> secondInterimBuckets = getInterimResults(job.getId());
|
||||
assertThat(secondInterimBuckets.get(0).getTimestamp().getTime(), equalTo(1400039000000L));
|
||||
assertThat(secondInterimBuckets.get(0).getRecordCount(), equalTo(0));
|
||||
assertThat(secondInterimBuckets.get(1).getTimestamp().getTime(), equalTo(1400040000000L));
|
||||
assertThat(secondInterimBuckets.get(1).getRecordCount(), equalTo(1));
|
||||
assertThat(secondInterimBuckets.get(1).getRecords().get(0).getActual().get(0), equalTo(16.0));
|
||||
});
|
||||
|
||||
|
@ -122,7 +118,7 @@ public class UpdateInterimResultsIT extends MlNativeAutodetectIntegTestCase {
|
|||
StringBuilder data = new StringBuilder();
|
||||
for (int i = 0; i < halfBuckets; i++) {
|
||||
int value = timeToValueMap.getOrDefault(time, randomIntBetween(1, 3));
|
||||
data.append("{\"time\":" + time + ", \"value\":" + value + "}\n");
|
||||
data.append("{\"time\":").append(time).append(", \"value\":").append(value).append("}\n");
|
||||
time += BUCKET_SPAN_SECONDS / 2;
|
||||
}
|
||||
return data.toString();
|
||||
|
@ -136,6 +132,6 @@ public class UpdateInterimResultsIT extends MlNativeAutodetectIntegTestCase {
|
|||
assertThat(response.getBuckets().count(), lessThan(1500L));
|
||||
List<Bucket> buckets = response.getBuckets().results();
|
||||
assertThat(buckets.size(), greaterThan(0));
|
||||
return buckets.stream().filter(b -> b.isInterim()).collect(Collectors.toList());
|
||||
return buckets.stream().filter(Bucket::isInterim).collect(Collectors.toList());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -21,7 +21,7 @@ import org.mockito.ArgumentCaptor;
|
|||
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.Date;
|
||||
import java.util.List;
|
||||
|
||||
|
@ -41,7 +41,6 @@ public class JobResultsPersisterTests extends ESTestCase {
|
|||
bucket.setEventCount(57);
|
||||
bucket.setInitialAnomalyScore(88.8);
|
||||
bucket.setProcessingTimeMs(8888);
|
||||
bucket.setRecordCount(1);
|
||||
|
||||
BucketInfluencer bi = new BucketInfluencer(JOB_ID, new Date(), 600);
|
||||
bi.setAnomalyScore(14.15);
|
||||
|
@ -53,7 +52,7 @@ public class JobResultsPersisterTests extends ESTestCase {
|
|||
|
||||
// We are adding a record but it shouldn't be persisted as part of the bucket
|
||||
AnomalyRecord record = new AnomalyRecord(JOB_ID, new Date(), 600);
|
||||
bucket.setRecords(Arrays.asList(record));
|
||||
bucket.setRecords(Collections.singletonList(record));
|
||||
|
||||
JobResultsPersister persister = new JobResultsPersister(Settings.EMPTY, client);
|
||||
persister.bulkPersisterBuilder(JOB_ID).persistBucket(bucket).executeRequest();
|
||||
|
@ -63,7 +62,6 @@ public class JobResultsPersisterTests extends ESTestCase {
|
|||
String s = ((IndexRequest)bulkRequest.requests().get(0)).source().utf8ToString();
|
||||
assertTrue(s.matches(".*anomaly_score.:99\\.9.*"));
|
||||
assertTrue(s.matches(".*initial_anomaly_score.:88\\.8.*"));
|
||||
assertTrue(s.matches(".*record_count.:1.*"));
|
||||
assertTrue(s.matches(".*event_count.:57.*"));
|
||||
assertTrue(s.matches(".*bucket_span.:123456.*"));
|
||||
assertTrue(s.matches(".*processing_time_ms.:8888.*"));
|
||||
|
|
|
@ -34,9 +34,9 @@ import static org.mockito.Mockito.when;
|
|||
public class AutodetectResultsParserTests extends ESTestCase {
|
||||
private static final double EPSILON = 0.000001;
|
||||
|
||||
public static final String METRIC_OUTPUT_SAMPLE = "[{\"bucket\": {\"job_id\":\"foo\",\"timestamp\":1359450000000,"
|
||||
private static final String METRIC_OUTPUT_SAMPLE = "[{\"bucket\": {\"job_id\":\"foo\",\"timestamp\":1359450000000,"
|
||||
+ "\"bucket_span\":22, \"records\":[],"
|
||||
+ "\"anomaly_score\":0,\"record_count\":0,\"event_count\":806,\"bucket_influencers\":["
|
||||
+ "\"anomaly_score\":0,\"event_count\":806,\"bucket_influencers\":["
|
||||
+ "{\"timestamp\":1359450000000,\"bucket_span\":22,\"job_id\":\"foo\",\"anomaly_score\":0,"
|
||||
+ "\"probability\":0.0, \"influencer_field_name\":\"bucket_time\","
|
||||
+ "\"initial_anomaly_score\":0.0}]}},{\"quantiles\": {\"job_id\":\"foo\", \"quantile_state\":\"[normalizer 1.1, normalizer 2" +
|
||||
|
@ -56,7 +56,7 @@ public class AutodetectResultsParserTests extends ESTestCase {
|
|||
+ "\"probability\":0.0473552,\"by_field_name\":\"airline\",\"by_field_value\":\"SWA\", \"typical\":[152.148],"
|
||||
+ "\"actual\":[96.6425],\"field_name\":\"responsetime\",\"function\":\"min\",\"partition_field_name\":\"\","
|
||||
+ "\"partition_field_value\":\"\"}],"
|
||||
+ "\"initial_anomaly_score\":0.0140005, \"anomaly_score\":20.22688, \"record_count\":4,"
|
||||
+ "\"initial_anomaly_score\":0.0140005, \"anomaly_score\":20.22688,"
|
||||
+ "\"event_count\":820,\"bucket_influencers\":[{\"timestamp\":1359453600000,\"bucket_span\":22,"
|
||||
+ "\"job_id\":\"foo\", \"raw_anomaly_score\":0.0140005, \"probability\":0.01,\"influencer_field_name\":\"bucket_time\","
|
||||
+ "\"initial_anomaly_score\":20.22688,\"anomaly_score\":20.22688} ,{\"timestamp\":1359453600000,\"bucket_span\":22,"
|
||||
|
@ -66,7 +66,7 @@ public class AutodetectResultsParserTests extends ESTestCase {
|
|||
+ "\"quantile_state\":\"[normalizer 1.2, normalizer 2.2]\"}} ,{\"flush\": {\"id\":\"testing1\"}} ,"
|
||||
+ "{\"quantiles\": {\"job_id\":\"foo\",\"timestamp\":1359453600000,\"quantile_state\":\"[normalizer 1.3, normalizer 2.3]\"}} ]";
|
||||
|
||||
public static final String POPULATION_OUTPUT_SAMPLE = "[{\"timestamp\":1379590200,\"records\":[{\"probability\":1.38951e-08,"
|
||||
private static final String POPULATION_OUTPUT_SAMPLE = "[{\"timestamp\":1379590200,\"records\":[{\"probability\":1.38951e-08,"
|
||||
+ "\"field_name\":\"sum_cs_bytes_\",\"over_field_name\":\"cs_host\",\"over_field_value\":\"mail.google.com\","
|
||||
+ "\"function\":\"max\","
|
||||
+ "\"causes\":[{\"probability\":1.38951e-08,\"field_name\":\"sum_cs_bytes_\",\"over_field_name\":\"cs_host\","
|
||||
|
@ -84,7 +84,7 @@ public class AutodetectResultsParserTests extends ESTestCase {
|
|||
+ "\"probability\":0.0152333,\"field_name\":\"sum_cs_bytes_\",\"over_field_name\":\"cs_host\","
|
||||
+ "\"over_field_value\":\"emea.salesforce.com\",\"function\":\"max\",\"typical\":[101534],\"actual\":[5.36373e+06]}],"
|
||||
+ "\"record_score\":0.303996,\"anomaly_score\":44.7324}],\"raw_anomaly_score\":1.30397,\"anomaly_score\":44.7324,"
|
||||
+ "\"record_count\":4,\"event_count\":1235}" + ",{\"flush\":\"testing2\"}"
|
||||
+ "\"event_count\":1235}" + ",{\"flush\":\"testing2\"}"
|
||||
+ ",{\"timestamp\":1379590800,\"records\":[{\"probability\":1.9008e-08,\"field_name\":\"sum_cs_bytes_\","
|
||||
+ "\"over_field_name\":\"cs_host\",\"over_field_value\":\"mail.google.com\",\"function\":\"max\",\"causes\":[{"
|
||||
+ "\"probability\":1.9008e-08,\"field_name\":\"sum_cs_bytes_\",\"over_field_name\":\"cs_host\","
|
||||
|
@ -233,7 +233,7 @@ public class AutodetectResultsParserTests extends ESTestCase {
|
|||
+ "\"field_name\":\"sum_cs_bytes_\",\"over_field_name\":\"cs_host\",\"over_field_value\":\"googleads.g.doubleclick.net\","
|
||||
+ "\"function\":\"max\",\"typical\":[31356],\"actual\":[210926]}],\"record_score\":0.00237509,"
|
||||
+ "\"anomaly_score\":1.19192}],\"raw_anomaly_score\":1.26918,\"anomaly_score\":1.19192,"
|
||||
+ "\"record_count\":34,\"event_count\":1159}" + "]";
|
||||
+ "\"event_count\":1159}" + "]";
|
||||
|
||||
public void testParser() throws IOException {
|
||||
InputStream inputStream = new ByteArrayInputStream(METRIC_OUTPUT_SAMPLE.getBytes(StandardCharsets.UTF_8));
|
||||
|
@ -246,7 +246,6 @@ public class AutodetectResultsParserTests extends ESTestCase {
|
|||
|
||||
assertEquals(2, buckets.size());
|
||||
assertEquals(new Date(1359450000000L), buckets.get(0).getTimestamp());
|
||||
assertEquals(0, buckets.get(0).getRecordCount());
|
||||
|
||||
assertEquals(buckets.get(0).getEventCount(), 806);
|
||||
|
||||
|
@ -258,7 +257,6 @@ public class AutodetectResultsParserTests extends ESTestCase {
|
|||
assertEquals("bucket_time", bucketInfluencers.get(0).getInfluencerFieldName());
|
||||
|
||||
assertEquals(new Date(1359453600000L), buckets.get(1).getTimestamp());
|
||||
assertEquals(4, buckets.get(1).getRecordCount());
|
||||
|
||||
assertEquals(buckets.get(1).getEventCount(), 820);
|
||||
bucketInfluencers = buckets.get(1).getBucketInfluencers();
|
||||
|
@ -341,7 +339,6 @@ public class AutodetectResultsParserTests extends ESTestCase {
|
|||
|
||||
assertEquals(2, buckets.size());
|
||||
assertEquals(new Date(1379590200000L), buckets.get(0).getTimestamp());
|
||||
assertEquals(4, buckets.get(0).getRecordCount());
|
||||
assertEquals(buckets.get(0).getEventCount(), 1235);
|
||||
|
||||
Bucket firstBucket = buckets.get(0);
|
||||
|
@ -353,7 +350,6 @@ public class AutodetectResultsParserTests extends ESTestCase {
|
|||
assertNotNull(firstBucket.getRecords().get(0).getCauses());
|
||||
|
||||
assertEquals(new Date(1379590800000L), buckets.get(1).getTimestamp());
|
||||
assertEquals(34, buckets.get(1).getRecordCount());
|
||||
assertEquals(buckets.get(1).getEventCount(), 1159);
|
||||
}
|
||||
|
||||
|
|
|
@ -62,9 +62,6 @@ public class BucketTests extends AbstractSerializingTestCase<Bucket> {
|
|||
if (randomBoolean()) {
|
||||
bucket.setProcessingTimeMs(randomLong());
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
bucket.setRecordCount(randomInt());
|
||||
}
|
||||
if (randomBoolean()) {
|
||||
int size = randomInt(10);
|
||||
List<AnomalyRecord> records = new ArrayList<>(size);
|
||||
|
@ -126,19 +123,9 @@ public class BucketTests extends AbstractSerializingTestCase<Bucket> {
|
|||
assertFalse(bucket2.equals(bucket1));
|
||||
}
|
||||
|
||||
public void testEquals_GivenDifferentRecordCount() {
|
||||
Bucket bucket1 = new Bucket("foo", new Date(123), 123);
|
||||
bucket1.setRecordCount(300);
|
||||
Bucket bucket2 = new Bucket("foo", new Date(123), 123);
|
||||
bucket2.setRecordCount(400);
|
||||
|
||||
assertFalse(bucket1.equals(bucket2));
|
||||
assertFalse(bucket2.equals(bucket1));
|
||||
}
|
||||
|
||||
public void testEquals_GivenOneHasRecordsAndTheOtherDoesNot() {
|
||||
Bucket bucket1 = new Bucket("foo", new Date(123), 123);
|
||||
bucket1.setRecords(Arrays.asList(new AnomalyRecord("foo", new Date(123), 123)));
|
||||
bucket1.setRecords(Collections.singletonList(new AnomalyRecord("foo", new Date(123), 123)));
|
||||
Bucket bucket2 = new Bucket("foo", new Date(123), 123);
|
||||
bucket2.setRecords(Collections.emptyList());
|
||||
|
||||
|
@ -148,7 +135,7 @@ public class BucketTests extends AbstractSerializingTestCase<Bucket> {
|
|||
|
||||
public void testEquals_GivenDifferentNumberOfRecords() {
|
||||
Bucket bucket1 = new Bucket("foo", new Date(123), 123);
|
||||
bucket1.setRecords(Arrays.asList(new AnomalyRecord("foo", new Date(123), 123)));
|
||||
bucket1.setRecords(Collections.singletonList(new AnomalyRecord("foo", new Date(123), 123)));
|
||||
Bucket bucket2 = new Bucket("foo", new Date(123), 123);
|
||||
bucket2.setRecords(Arrays.asList(new AnomalyRecord("foo", new Date(123), 123),
|
||||
new AnomalyRecord("foo", new Date(123), 123)));
|
||||
|
@ -164,9 +151,9 @@ public class BucketTests extends AbstractSerializingTestCase<Bucket> {
|
|||
anomalyRecord1.setRecordScore(2.0);
|
||||
|
||||
Bucket bucket1 = new Bucket("foo", new Date(123), 123);
|
||||
bucket1.setRecords(Arrays.asList(anomalyRecord1));
|
||||
bucket1.setRecords(Collections.singletonList(anomalyRecord1));
|
||||
Bucket bucket2 = new Bucket("foo", new Date(123), 123);
|
||||
bucket2.setRecords(Arrays.asList(anomalyRecord2));
|
||||
bucket2.setRecords(Collections.singletonList(anomalyRecord2));
|
||||
|
||||
assertFalse(bucket1.equals(bucket2));
|
||||
assertFalse(bucket2.equals(bucket1));
|
||||
|
@ -207,8 +194,7 @@ public class BucketTests extends AbstractSerializingTestCase<Bucket> {
|
|||
bucket1.setInitialAnomalyScore(92.0);
|
||||
bucket1.setEventCount(134);
|
||||
bucket1.setInterim(true);
|
||||
bucket1.setRecordCount(4);
|
||||
bucket1.setRecords(Arrays.asList(record));
|
||||
bucket1.setRecords(Collections.singletonList(record));
|
||||
bucket1.addBucketInfluencer(bucketInfluencer);
|
||||
|
||||
Bucket bucket2 = new Bucket("foo", date, 123);
|
||||
|
@ -216,8 +202,7 @@ public class BucketTests extends AbstractSerializingTestCase<Bucket> {
|
|||
bucket2.setInitialAnomalyScore(92.0);
|
||||
bucket2.setEventCount(134);
|
||||
bucket2.setInterim(true);
|
||||
bucket2.setRecordCount(4);
|
||||
bucket2.setRecords(Arrays.asList(record));
|
||||
bucket2.setRecords(Collections.singletonList(record));
|
||||
bucket2.addBucketInfluencer(bucketInfluencer);
|
||||
|
||||
assertTrue(bucket1.equals(bucket2));
|
||||
|
@ -229,7 +214,6 @@ public class BucketTests extends AbstractSerializingTestCase<Bucket> {
|
|||
Bucket bucket = new Bucket("foo", new Date(123), 123);
|
||||
bucket.addBucketInfluencer(new BucketInfluencer("foo", new Date(123), 123));
|
||||
bucket.setAnomalyScore(0.0);
|
||||
bucket.setRecordCount(0);
|
||||
|
||||
assertFalse(bucket.isNormalizable());
|
||||
}
|
||||
|
@ -247,7 +231,6 @@ public class BucketTests extends AbstractSerializingTestCase<Bucket> {
|
|||
Bucket bucket = new Bucket("foo", new Date(123), 123);
|
||||
bucket.addBucketInfluencer(new BucketInfluencer("foo", new Date(123), 123));
|
||||
bucket.setAnomalyScore(1.0);
|
||||
bucket.setRecordCount(0);
|
||||
|
||||
assertTrue(bucket.isNormalizable());
|
||||
}
|
||||
|
@ -256,7 +239,6 @@ public class BucketTests extends AbstractSerializingTestCase<Bucket> {
|
|||
Bucket bucket = new Bucket("foo", new Date(123), 123);
|
||||
bucket.addBucketInfluencer(new BucketInfluencer("foo", new Date(123), 123));
|
||||
bucket.setAnomalyScore(1.0);
|
||||
bucket.setRecordCount(1);
|
||||
|
||||
assertTrue(bucket.isNormalizable());
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue