Merge pull request #11881 from polyfractal/feature/movavg_optim2
Aggregations: add cost minimizer to tune moving_avg parameters
This commit is contained in:
commit
d5f73ec8ac
|
@ -36,6 +36,7 @@ public class MovAvgBuilder extends PipelineAggregatorBuilder<MovAvgBuilder> {
|
|||
private MovAvgModelBuilder modelBuilder;
|
||||
private Integer window;
|
||||
private Integer predict;
|
||||
private Boolean minimize;
|
||||
|
||||
public MovAvgBuilder(String name) {
|
||||
super(name, MovAvgPipelineAggregator.TYPE.name());
|
||||
|
@ -94,6 +95,18 @@ public class MovAvgBuilder extends PipelineAggregatorBuilder<MovAvgBuilder> {
|
|||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determines if the model should be fit to the data using a cost
|
||||
* minimizing algorithm.
|
||||
*
|
||||
* @param minimize If the model should be fit to the underlying data
|
||||
* @return Returns the builder to continue chaining
|
||||
*/
|
||||
public MovAvgBuilder minimize(boolean minimize) {
|
||||
this.minimize = minimize;
|
||||
return this;
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
protected XContentBuilder internalXContent(XContentBuilder builder, Params params) throws IOException {
|
||||
|
@ -112,6 +125,9 @@ public class MovAvgBuilder extends PipelineAggregatorBuilder<MovAvgBuilder> {
|
|||
if (predict != null) {
|
||||
builder.field(MovAvgParser.PREDICT.getPreferredName(), predict);
|
||||
}
|
||||
if (minimize != null) {
|
||||
builder.field(MovAvgParser.MINIMIZE.getPreferredName(), minimize);
|
||||
}
|
||||
return builder;
|
||||
}
|
||||
|
||||
|
|
|
@ -44,6 +44,7 @@ public class MovAvgParser implements PipelineAggregator.Parser {
|
|||
public static final ParseField WINDOW = new ParseField("window");
|
||||
public static final ParseField SETTINGS = new ParseField("settings");
|
||||
public static final ParseField PREDICT = new ParseField("predict");
|
||||
public static final ParseField MINIMIZE = new ParseField("minimize");
|
||||
|
||||
private final MovAvgModelParserMapper movAvgModelParserMapper;
|
||||
|
||||
|
@ -69,6 +70,7 @@ public class MovAvgParser implements PipelineAggregator.Parser {
|
|||
Map<String, Object> settings = null;
|
||||
String model = "simple";
|
||||
int predict = 0;
|
||||
Boolean minimize = null;
|
||||
|
||||
while ((token = parser.nextToken()) != XContentParser.Token.END_OBJECT) {
|
||||
if (token == XContentParser.Token.FIELD_NAME) {
|
||||
|
@ -124,6 +126,13 @@ public class MovAvgParser implements PipelineAggregator.Parser {
|
|||
throw new SearchParseException(context, "Unknown key for a " + token + " in [" + pipelineAggregatorName + "]: ["
|
||||
+ currentFieldName + "].", parser.getTokenLocation());
|
||||
}
|
||||
} else if (token == XContentParser.Token.VALUE_BOOLEAN) {
|
||||
if (context.parseFieldMatcher().match(currentFieldName, MINIMIZE)) {
|
||||
minimize = parser.booleanValue();
|
||||
} else {
|
||||
throw new SearchParseException(context, "Unknown key for a " + token + " in [" + pipelineAggregatorName + "]: ["
|
||||
+ currentFieldName + "].", parser.getTokenLocation());
|
||||
}
|
||||
} else {
|
||||
throw new SearchParseException(context, "Unexpected token " + token + " in [" + pipelineAggregatorName + "].",
|
||||
parser.getTokenLocation());
|
||||
|
@ -155,9 +164,17 @@ public class MovAvgParser implements PipelineAggregator.Parser {
|
|||
throw new SearchParseException(context, "Could not parse settings for model [" + model + "].", null, exception);
|
||||
}
|
||||
|
||||
// If the user doesn't set a preference for cost minimization, ask what the model prefers
|
||||
if (minimize == null) {
|
||||
minimize = movAvgModel.minimizeByDefault();
|
||||
} else if (minimize && !movAvgModel.canBeMinimized()) {
|
||||
// If the user asks to minimize, but this model doesn't support it, throw exception
|
||||
throw new SearchParseException(context, "The [" + model + "] model cannot be minimized.", null);
|
||||
}
|
||||
|
||||
|
||||
return new MovAvgPipelineAggregator.Factory(pipelineAggregatorName, bucketsPaths, formatter, gapPolicy, window, predict,
|
||||
movAvgModel);
|
||||
movAvgModel, minimize);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -48,6 +48,7 @@ import org.joda.time.DateTime;
|
|||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.ListIterator;
|
||||
import java.util.Map;
|
||||
|
||||
import static org.elasticsearch.search.aggregations.pipeline.BucketHelpers.resolveBucketValue;
|
||||
|
@ -81,18 +82,20 @@ public class MovAvgPipelineAggregator extends PipelineAggregator {
|
|||
private int window;
|
||||
private MovAvgModel model;
|
||||
private int predict;
|
||||
private boolean minimize;
|
||||
|
||||
public MovAvgPipelineAggregator() {
|
||||
}
|
||||
|
||||
public MovAvgPipelineAggregator(String name, String[] bucketsPaths, ValueFormatter formatter, GapPolicy gapPolicy,
|
||||
int window, int predict, MovAvgModel model, Map<String, Object> metadata) {
|
||||
int window, int predict, MovAvgModel model, boolean minimize, Map<String, Object> metadata) {
|
||||
super(name, bucketsPaths, metadata);
|
||||
this.formatter = formatter;
|
||||
this.gapPolicy = gapPolicy;
|
||||
this.window = window;
|
||||
this.model = model;
|
||||
this.predict = predict;
|
||||
this.minimize = minimize;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -113,6 +116,12 @@ public class MovAvgPipelineAggregator extends PipelineAggregator {
|
|||
int lastValidPosition = 0;
|
||||
int counter = 0;
|
||||
|
||||
// Do we need to fit the model parameters to the data?
|
||||
if (minimize) {
|
||||
assert (model.canBeMinimized());
|
||||
model = minimize(buckets, histo, model);
|
||||
}
|
||||
|
||||
for (InternalHistogram.Bucket bucket : buckets) {
|
||||
Double thisBucketValue = resolveBucketValue(histo, bucket, bucketsPaths()[0], gapPolicy);
|
||||
|
||||
|
@ -194,6 +203,60 @@ public class MovAvgPipelineAggregator extends PipelineAggregator {
|
|||
return factory.create(newBuckets, histo);
|
||||
}
|
||||
|
||||
private MovAvgModel minimize(List<? extends InternalHistogram.Bucket> buckets, InternalHistogram histo, MovAvgModel model) {
|
||||
|
||||
int counter = 0;
|
||||
EvictingQueue<Double> values = EvictingQueue.create(window);
|
||||
|
||||
double[] test = new double[window];
|
||||
ListIterator<? extends InternalHistogram.Bucket> iter = buckets.listIterator(buckets.size());
|
||||
|
||||
// We have to walk the iterator backwards because we don't know if/how many buckets are empty.
|
||||
while (iter.hasPrevious() && counter < window) {
|
||||
|
||||
Double thisBucketValue = resolveBucketValue(histo, iter.previous(), bucketsPaths()[0], gapPolicy);
|
||||
|
||||
if (!(thisBucketValue == null || thisBucketValue.equals(Double.NaN))) {
|
||||
test[window - counter - 1] = thisBucketValue;
|
||||
counter += 1;
|
||||
}
|
||||
}
|
||||
|
||||
// If we didn't fill the test set, we don't have enough data to minimize.
|
||||
// Just return the model with the starting coef
|
||||
if (counter < window) {
|
||||
return model;
|
||||
}
|
||||
|
||||
//And do it again, for the train set. Unfortunately we have to fill an array and then
|
||||
//fill an evicting queue backwards :(
|
||||
|
||||
counter = 0;
|
||||
double[] train = new double[window];
|
||||
|
||||
while (iter.hasPrevious() && counter < window) {
|
||||
|
||||
Double thisBucketValue = resolveBucketValue(histo, iter.previous(), bucketsPaths()[0], gapPolicy);
|
||||
|
||||
if (!(thisBucketValue == null || thisBucketValue.equals(Double.NaN))) {
|
||||
train[window - counter - 1] = thisBucketValue;
|
||||
counter += 1;
|
||||
}
|
||||
}
|
||||
|
||||
// If we didn't fill the train set, we don't have enough data to minimize.
|
||||
// Just return the model with the starting coef
|
||||
if (counter < window) {
|
||||
return model;
|
||||
}
|
||||
|
||||
for (double v : train) {
|
||||
values.add(v);
|
||||
}
|
||||
|
||||
return SimulatedAnealingMinimizer.minimize(model, values, test);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void doReadFrom(StreamInput in) throws IOException {
|
||||
formatter = ValueFormatterStreams.readOptional(in);
|
||||
|
@ -201,6 +264,7 @@ public class MovAvgPipelineAggregator extends PipelineAggregator {
|
|||
window = in.readVInt();
|
||||
predict = in.readVInt();
|
||||
model = MovAvgModelStreams.read(in);
|
||||
minimize = in.readBoolean();
|
||||
|
||||
}
|
||||
|
||||
|
@ -211,6 +275,7 @@ public class MovAvgPipelineAggregator extends PipelineAggregator {
|
|||
out.writeVInt(window);
|
||||
out.writeVInt(predict);
|
||||
model.writeTo(out);
|
||||
out.writeBoolean(minimize);
|
||||
|
||||
}
|
||||
|
||||
|
@ -221,20 +286,22 @@ public class MovAvgPipelineAggregator extends PipelineAggregator {
|
|||
private int window;
|
||||
private MovAvgModel model;
|
||||
private int predict;
|
||||
private boolean minimize;
|
||||
|
||||
public Factory(String name, String[] bucketsPaths, ValueFormatter formatter, GapPolicy gapPolicy,
|
||||
int window, int predict, MovAvgModel model) {
|
||||
int window, int predict, MovAvgModel model, boolean minimize) {
|
||||
super(name, TYPE.name(), bucketsPaths);
|
||||
this.formatter = formatter;
|
||||
this.gapPolicy = gapPolicy;
|
||||
this.window = window;
|
||||
this.model = model;
|
||||
this.predict = predict;
|
||||
this.minimize = minimize;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected PipelineAggregator createInternal(Map<String, Object> metaData) throws IOException {
|
||||
return new MovAvgPipelineAggregator(name, bucketsPaths, formatter, gapPolicy, window, predict, model, metaData);
|
||||
return new MovAvgPipelineAggregator(name, bucketsPaths, formatter, gapPolicy, window, predict, model, minimize, metaData);
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -0,0 +1,125 @@
|
|||
/*
|
||||
* Licensed to Elasticsearch under one or more contributor
|
||||
* license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright
|
||||
* ownership. Elasticsearch licenses this file to you under
|
||||
* the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing,
|
||||
* software distributed under the License is distributed on an
|
||||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
* KIND, either express or implied. See the License for the
|
||||
* specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*/
|
||||
|
||||
package org.elasticsearch.search.aggregations.pipeline.movavg;
|
||||
|
||||
import com.google.common.collect.EvictingQueue;
|
||||
import org.elasticsearch.search.aggregations.pipeline.movavg.models.MovAvgModel;
|
||||
|
||||
/**
|
||||
* A cost minimizer which will fit a MovAvgModel to the data.
|
||||
*
|
||||
* This optimizer uses naive simulated annealing. Random solutions in the problem space
|
||||
* are generated, compared against the last period of data, and the least absolute deviation
|
||||
* is recorded as a cost.
|
||||
*
|
||||
* If the new cost is better than the old cost, the new coefficients are chosen. If the new
|
||||
* solution is worse, there is a temperature-dependent probability it will be randomly selected
|
||||
* anyway. This allows the algo to sample the problem space widely. As iterations progress,
|
||||
* the temperature decreases and the algorithm rejects poor solutions more regularly,
|
||||
* theoretically honing in on a global minimum.
|
||||
*/
|
||||
public class SimulatedAnealingMinimizer {
|
||||
|
||||
/**
|
||||
* Runs the simulated annealing algorithm and produces a model with new coefficients that, theoretically
|
||||
* fit the data better and generalizes to future forecasts without overfitting.
|
||||
*
|
||||
* @param model The MovAvgModel to be optimized for
|
||||
* @param train A training set provided to the model, which predictions will be
|
||||
* generated from
|
||||
* @param test A test set of data to compare the predictions against and derive
|
||||
* a cost for the model
|
||||
* @return A new, minimized model that (theoretically) better fits the data
|
||||
*/
|
||||
public static MovAvgModel minimize(MovAvgModel model, EvictingQueue<Double> train, double[] test) {
|
||||
|
||||
double temp = 1;
|
||||
double minTemp = 0.0001;
|
||||
int iterations = 100;
|
||||
double alpha = 0.9;
|
||||
|
||||
MovAvgModel bestModel = model;
|
||||
MovAvgModel oldModel = model;
|
||||
|
||||
double oldCost = cost(model, train, test);
|
||||
double bestCost = oldCost;
|
||||
|
||||
while (temp > minTemp) {
|
||||
for (int i = 0; i < iterations; i++) {
|
||||
MovAvgModel newModel = oldModel.neighboringModel();
|
||||
double newCost = cost(newModel, train, test);
|
||||
|
||||
double ap = acceptanceProbability(oldCost, newCost, temp);
|
||||
if (ap > Math.random()) {
|
||||
oldModel = newModel;
|
||||
oldCost = newCost;
|
||||
|
||||
if (newCost < bestCost) {
|
||||
bestCost = newCost;
|
||||
bestModel = newModel;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
temp *= alpha;
|
||||
}
|
||||
|
||||
return bestModel;
|
||||
}
|
||||
|
||||
/**
|
||||
* If the new cost is better than old, return 1.0. Otherwise, return a double that increases
|
||||
* as the two costs are closer to each other.
|
||||
*
|
||||
* @param oldCost Old model cost
|
||||
* @param newCost New model cost
|
||||
* @param temp Current annealing temperature
|
||||
* @return The probability of accepting the new cost over the old
|
||||
*/
|
||||
private static double acceptanceProbability(double oldCost, double newCost, double temp) {
|
||||
return newCost < oldCost ? 1.0 : Math.exp(-(newCost - oldCost) / temp);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the "cost" of a model. E.g. when run on the training data, how closely do the predictions
|
||||
* match the test data
|
||||
*
|
||||
* Uses Least Absolute Differences to calculate error. Note that this is not scale free, but seems
|
||||
* to work fairly well in practice
|
||||
*
|
||||
* @param model The MovAvgModel we are fitting
|
||||
* @param train A training set of data given to the model, which will then generate predictions from
|
||||
* @param test A test set of data to compare against the predictions
|
||||
* @return A cost, or error, of the model
|
||||
*/
|
||||
private static double cost(MovAvgModel model, EvictingQueue<Double> train, double[] test) {
|
||||
double error = 0;
|
||||
double[] predictions = model.predict(train, test.length);
|
||||
|
||||
assert(predictions.length == test.length);
|
||||
|
||||
for (int i = 0; i < predictions.length; i++) {
|
||||
error += Math.abs(test[i] - predictions[i]) ;
|
||||
}
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
}
|
|
@ -41,16 +41,33 @@ public class EwmaModel extends MovAvgModel {
|
|||
protected static final ParseField NAME_FIELD = new ParseField("ewma");
|
||||
|
||||
/**
|
||||
* Controls smoothing of data. Alpha = 1 retains no memory of past values
|
||||
* Controls smoothing of data. Also known as "level" value.
|
||||
* Alpha = 1 retains no memory of past values
|
||||
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
|
||||
* mean of the series). Useful values are somewhere in between
|
||||
* mean of the series).
|
||||
*/
|
||||
private double alpha;
|
||||
private final double alpha;
|
||||
|
||||
public EwmaModel(double alpha) {
|
||||
this.alpha = alpha;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean canBeMinimized() {
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel neighboringModel() {
|
||||
double alpha = Math.random();
|
||||
return new EwmaModel(alpha);
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel clone() {
|
||||
return new EwmaModel(this.alpha);
|
||||
}
|
||||
|
||||
@Override
|
||||
protected <T extends Number> double[] doPredict(Collection<T> values, int numPredictions) {
|
||||
double[] predictions = new double[numPredictions];
|
||||
|
@ -105,8 +122,7 @@ public class EwmaModel extends MovAvgModel {
|
|||
@Override
|
||||
public MovAvgModel parse(@Nullable Map<String, Object> settings, String pipelineName, int windowSize, ParseFieldMatcher parseFieldMatcher) throws ParseException {
|
||||
|
||||
double alpha = parseDoubleParam(settings, "alpha", 0.5);
|
||||
|
||||
double alpha = parseDoubleParam(settings, "alpha", 0.3);
|
||||
return new EwmaModel(alpha);
|
||||
}
|
||||
|
||||
|
@ -114,7 +130,7 @@ public class EwmaModel extends MovAvgModel {
|
|||
|
||||
public static class EWMAModelBuilder implements MovAvgModelBuilder {
|
||||
|
||||
private double alpha = 0.5;
|
||||
private Double alpha;
|
||||
|
||||
/**
|
||||
* Alpha controls the smoothing of the data. Alpha = 1 retains no memory of past values
|
||||
|
@ -134,7 +150,10 @@ public class EwmaModel extends MovAvgModel {
|
|||
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
|
||||
builder.field(MovAvgParser.MODEL.getPreferredName(), NAME_FIELD.getPreferredName());
|
||||
builder.startObject(MovAvgParser.SETTINGS.getPreferredName());
|
||||
if (alpha != null) {
|
||||
builder.field("alpha", alpha);
|
||||
}
|
||||
|
||||
builder.endObject();
|
||||
return builder;
|
||||
}
|
||||
|
|
|
@ -39,22 +39,50 @@ public class HoltLinearModel extends MovAvgModel {
|
|||
protected static final ParseField NAME_FIELD = new ParseField("holt");
|
||||
|
||||
/**
|
||||
* Controls smoothing of data. Alpha = 1 retains no memory of past values
|
||||
* Controls smoothing of data. Also known as "level" value.
|
||||
* Alpha = 1 retains no memory of past values
|
||||
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
|
||||
* mean of the series). Useful values are somewhere in between
|
||||
* mean of the series).
|
||||
*/
|
||||
private double alpha;
|
||||
private final double alpha;
|
||||
|
||||
/**
|
||||
* Equivalent to <code>alpha</code>, but controls the smoothing of the trend instead of the data
|
||||
* Controls smoothing of trend.
|
||||
* Beta = 1 retains no memory of past values
|
||||
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
|
||||
* mean of the series).
|
||||
*/
|
||||
private double beta;
|
||||
private final double beta;
|
||||
|
||||
public HoltLinearModel(double alpha, double beta) {
|
||||
this.alpha = alpha;
|
||||
this.beta = beta;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean canBeMinimized() {
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel neighboringModel() {
|
||||
double newValue = Math.random();
|
||||
switch ((int) (Math.random() * 2)) {
|
||||
case 0:
|
||||
return new HoltLinearModel(newValue, this.beta);
|
||||
case 1:
|
||||
return new HoltLinearModel(this.alpha, newValue);
|
||||
default:
|
||||
assert (false): "Random value fell outside of range [0-1]";
|
||||
return new HoltLinearModel(newValue, this.beta); // This should never technically happen...
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel clone() {
|
||||
return new HoltLinearModel(this.alpha, this.beta);
|
||||
}
|
||||
|
||||
/**
|
||||
* Predicts the next `n` values in the series, using the smoothing model to generate new values.
|
||||
* Unlike the other moving averages, Holt-Linear has forecasting/prediction built into the algorithm.
|
||||
|
@ -154,16 +182,17 @@ public class HoltLinearModel extends MovAvgModel {
|
|||
@Override
|
||||
public MovAvgModel parse(@Nullable Map<String, Object> settings, String pipelineName, int windowSize, ParseFieldMatcher parseFieldMatcher) throws ParseException {
|
||||
|
||||
double alpha = parseDoubleParam(settings, "alpha", 0.5);
|
||||
double beta = parseDoubleParam(settings, "beta", 0.5);
|
||||
double alpha = parseDoubleParam(settings, "alpha", 0.3);
|
||||
double beta = parseDoubleParam(settings, "beta", 0.1);
|
||||
return new HoltLinearModel(alpha, beta);
|
||||
}
|
||||
}
|
||||
|
||||
public static class HoltLinearModelBuilder implements MovAvgModelBuilder {
|
||||
|
||||
private double alpha = 0.5;
|
||||
private double beta = 0.5;
|
||||
|
||||
private Double alpha;
|
||||
private Double beta;
|
||||
|
||||
/**
|
||||
* Alpha controls the smoothing of the data. Alpha = 1 retains no memory of past values
|
||||
|
@ -195,8 +224,15 @@ public class HoltLinearModel extends MovAvgModel {
|
|||
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
|
||||
builder.field(MovAvgParser.MODEL.getPreferredName(), NAME_FIELD.getPreferredName());
|
||||
builder.startObject(MovAvgParser.SETTINGS.getPreferredName());
|
||||
|
||||
if (alpha != null) {
|
||||
builder.field("alpha", alpha);
|
||||
}
|
||||
|
||||
if (beta != null) {
|
||||
builder.field("beta", beta);
|
||||
}
|
||||
|
||||
builder.endObject();
|
||||
return builder;
|
||||
}
|
||||
|
|
|
@ -41,6 +41,47 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
|
||||
protected static final ParseField NAME_FIELD = new ParseField("holt_winters");
|
||||
|
||||
/**
|
||||
* Controls smoothing of data. Also known as "level" value.
|
||||
* Alpha = 1 retains no memory of past values
|
||||
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
|
||||
* mean of the series).
|
||||
*/
|
||||
private final double alpha;
|
||||
|
||||
/**
|
||||
* Controls smoothing of trend.
|
||||
* Beta = 1 retains no memory of past values
|
||||
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
|
||||
* mean of the series).
|
||||
*/
|
||||
private final double beta;
|
||||
|
||||
/**
|
||||
* Controls smoothing of seasonality.
|
||||
* Gamma = 1 retains no memory of past values
|
||||
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
|
||||
* mean of the series).
|
||||
*/
|
||||
private final double gamma;
|
||||
|
||||
/**
|
||||
* Periodicity of the data
|
||||
*/
|
||||
private final int period;
|
||||
|
||||
/**
|
||||
* Whether this is a multiplicative or additive HW
|
||||
*/
|
||||
private final SeasonalityType seasonalityType;
|
||||
|
||||
/**
|
||||
* Padding is used to add a very small amount to values, so that zeroes do not interfere
|
||||
* with multiplicative seasonality math (e.g. division by zero)
|
||||
*/
|
||||
private final boolean pad;
|
||||
private final double padding;
|
||||
|
||||
public enum SeasonalityType {
|
||||
ADDITIVE((byte) 0, "add"), MULTIPLICATIVE((byte) 1, "mult");
|
||||
|
||||
|
@ -116,27 +157,6 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Controls smoothing of data. Alpha = 1 retains no memory of past values
|
||||
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
|
||||
* mean of the series). Useful values are somewhere in between
|
||||
*/
|
||||
private double alpha;
|
||||
|
||||
/**
|
||||
* Equivalent to <code>alpha</code>, but controls the smoothing of the trend instead of the data
|
||||
*/
|
||||
private double beta;
|
||||
|
||||
private double gamma;
|
||||
|
||||
private int period;
|
||||
|
||||
private SeasonalityType seasonalityType;
|
||||
|
||||
private boolean pad;
|
||||
private double padding;
|
||||
|
||||
public HoltWintersModel(double alpha, double beta, double gamma, int period, SeasonalityType seasonalityType, boolean pad) {
|
||||
this.alpha = alpha;
|
||||
this.beta = beta;
|
||||
|
@ -150,11 +170,41 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
this.padding = seasonalityType.equals(SeasonalityType.MULTIPLICATIVE) && pad ? 0.0000000001 : 0;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean minimizeByDefault() {
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean hasValue(int windowLength) {
|
||||
public boolean canBeMinimized() {
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel neighboringModel() {
|
||||
double newValue = Math.random();
|
||||
switch ((int) (Math.random() * 3)) {
|
||||
case 0:
|
||||
return new HoltWintersModel(newValue, beta, gamma, period, seasonalityType, pad);
|
||||
case 1:
|
||||
return new HoltWintersModel(alpha, newValue, gamma, period, seasonalityType, pad);
|
||||
case 2:
|
||||
return new HoltWintersModel(alpha, beta, newValue, period, seasonalityType, pad);
|
||||
default:
|
||||
assert (false): "Random value fell outside of range [0-2]";
|
||||
return new HoltWintersModel(newValue, beta, gamma, period, seasonalityType, pad); // This should never technically happen...
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel clone() {
|
||||
return new HoltWintersModel(alpha, beta, gamma, period, seasonalityType, pad);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean hasValue(int valuesAvailable) {
|
||||
// We need at least (period * 2) data-points (e.g. two "seasons")
|
||||
return windowLength >= period * 2;
|
||||
return valuesAvailable >= period * 2;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -198,7 +248,7 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
|
||||
// Smoothed value
|
||||
double s = 0;
|
||||
double last_s = 0;
|
||||
double last_s;
|
||||
|
||||
// Trend value
|
||||
double b = 0;
|
||||
|
@ -218,12 +268,11 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
// Calculate the slopes between first and second season for each period
|
||||
for (int i = 0; i < period; i++) {
|
||||
s += vs[i];
|
||||
b += (vs[i] - vs[i + period]) / 2;
|
||||
b += (vs[i + period] - vs[i]) / period;
|
||||
}
|
||||
s /= (double) period;
|
||||
b /= (double) period;
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
|
||||
// Calculate first seasonal
|
||||
if (Double.compare(s, 0.0) == 0 || Double.compare(s, -0.0) == 0) {
|
||||
|
@ -247,7 +296,7 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
if (seasonalityType.equals(SeasonalityType.MULTIPLICATIVE)) {
|
||||
seasonal[i] = gamma * (vs[i] / (last_s + last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
} else {
|
||||
seasonal[i] = gamma * (vs[i] - (last_s + last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
seasonal[i] = gamma * (vs[i] - (last_s - last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
}
|
||||
|
||||
last_s = s;
|
||||
|
@ -255,18 +304,15 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
}
|
||||
|
||||
double[] forecastValues = new double[numForecasts];
|
||||
int seasonCounter = (values.size() - 1) - period;
|
||||
|
||||
for (int i = 0; i < numForecasts; i++) {
|
||||
for (int i = 1; i <= numForecasts; i++) {
|
||||
int idx = values.size() - period + ((i - 1) % period);
|
||||
|
||||
// TODO perhaps pad out seasonal to a power of 2 and use a mask instead of modulo?
|
||||
if (seasonalityType.equals(SeasonalityType.MULTIPLICATIVE)) {
|
||||
forecastValues[i] = s + (i * b) * seasonal[seasonCounter % values.size()];
|
||||
forecastValues[i-1] = (s + (i * b)) * seasonal[idx];
|
||||
} else {
|
||||
forecastValues[i] = s + (i * b) + seasonal[seasonCounter % values.size()];
|
||||
forecastValues[i-1] = s + (i * b) + seasonal[idx];
|
||||
}
|
||||
|
||||
seasonCounter += 1;
|
||||
}
|
||||
|
||||
return forecastValues;
|
||||
|
@ -312,9 +358,9 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
@Override
|
||||
public MovAvgModel parse(@Nullable Map<String, Object> settings, String pipelineName, int windowSize, ParseFieldMatcher parseFieldMatcher) throws ParseException {
|
||||
|
||||
double alpha = parseDoubleParam(settings, "alpha", 0.5);
|
||||
double beta = parseDoubleParam(settings, "beta", 0.5);
|
||||
double gamma = parseDoubleParam(settings, "gamma", 0.5);
|
||||
double alpha = parseDoubleParam(settings, "alpha", 0.3);
|
||||
double beta = parseDoubleParam(settings, "beta", 0.1);
|
||||
double gamma = parseDoubleParam(settings, "gamma", 0.3);
|
||||
int period = parseIntegerParam(settings, "period", 1);
|
||||
|
||||
if (windowSize < 2 * period) {
|
||||
|
@ -345,12 +391,12 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
|
||||
public static class HoltWintersModelBuilder implements MovAvgModelBuilder {
|
||||
|
||||
private double alpha = 0.5;
|
||||
private double beta = 0.5;
|
||||
private double gamma = 0.5;
|
||||
private int period = 1;
|
||||
private SeasonalityType seasonalityType = SeasonalityType.ADDITIVE;
|
||||
private boolean pad = true;
|
||||
private Double alpha;
|
||||
private Double beta;
|
||||
private Double gamma;
|
||||
private Integer period;
|
||||
private SeasonalityType seasonalityType;
|
||||
private Boolean pad;
|
||||
|
||||
/**
|
||||
* Alpha controls the smoothing of the data. Alpha = 1 retains no memory of past values
|
||||
|
@ -402,12 +448,31 @@ public class HoltWintersModel extends MovAvgModel {
|
|||
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
|
||||
builder.field(MovAvgParser.MODEL.getPreferredName(), NAME_FIELD.getPreferredName());
|
||||
builder.startObject(MovAvgParser.SETTINGS.getPreferredName());
|
||||
|
||||
if (alpha != null) {
|
||||
builder.field("alpha", alpha);
|
||||
}
|
||||
|
||||
if (beta != null) {
|
||||
builder.field("beta", beta);
|
||||
}
|
||||
|
||||
if (gamma != null) {
|
||||
builder.field("gamma", gamma);
|
||||
}
|
||||
|
||||
if (period != null) {
|
||||
builder.field("period", period);
|
||||
builder.field("type", seasonalityType.getName());
|
||||
}
|
||||
|
||||
if (pad != null) {
|
||||
builder.field("pad", pad);
|
||||
}
|
||||
|
||||
if (seasonalityType != null) {
|
||||
builder.field("seasonalityType", seasonalityType);
|
||||
}
|
||||
|
||||
builder.endObject();
|
||||
return builder;
|
||||
}
|
||||
|
|
|
@ -42,6 +42,22 @@ public class LinearModel extends MovAvgModel {
|
|||
|
||||
protected static final ParseField NAME_FIELD = new ParseField("linear");
|
||||
|
||||
|
||||
@Override
|
||||
public boolean canBeMinimized() {
|
||||
return false;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel neighboringModel() {
|
||||
return new LinearModel();
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel clone() {
|
||||
return new LinearModel();
|
||||
}
|
||||
|
||||
@Override
|
||||
protected <T extends Number> double[] doPredict(Collection<T> values, int numPredictions) {
|
||||
double[] predictions = new double[numPredictions];
|
||||
|
|
|
@ -32,17 +32,42 @@ import java.util.Map;
|
|||
|
||||
public abstract class MovAvgModel {
|
||||
|
||||
/**
|
||||
* Should this model be fit to the data via a cost minimizing algorithm by default?
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
public boolean minimizeByDefault() {
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns if the model can be cost minimized. Not all models have parameters
|
||||
* which can be tuned / optimized.
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
public abstract boolean canBeMinimized();
|
||||
|
||||
/**
|
||||
* Generates a "neighboring" model, where one of the tunable parameters has been
|
||||
* randomly mutated within the allowed range. Used for minimization
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
public abstract MovAvgModel neighboringModel();
|
||||
|
||||
/**
|
||||
* Checks to see this model can produce a new value, without actually running the algo.
|
||||
* This can be used for models that have certain preconditions that need to be met in order
|
||||
* to short-circuit execution
|
||||
*
|
||||
* @param windowLength Length of current window
|
||||
* @param valuesAvailable Number of values in the current window of values
|
||||
* @return Returns `true` if calling next() will produce a value, `false` otherwise
|
||||
*/
|
||||
public boolean hasValue(int windowLength) {
|
||||
public boolean hasValue(int valuesAvailable) {
|
||||
// Default implementation can always provide a next() value
|
||||
return windowLength > 0;
|
||||
return valuesAvailable > 0;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -85,6 +110,8 @@ public abstract class MovAvgModel {
|
|||
|
||||
/**
|
||||
* Returns an empty set of predictions, filled with NaNs
|
||||
* @param numPredictions Number of empty predictions to generate
|
||||
* @return
|
||||
*/
|
||||
protected double[] emptyPredictions(int numPredictions) {
|
||||
double[] predictions = new double[numPredictions];
|
||||
|
@ -100,6 +127,13 @@ public abstract class MovAvgModel {
|
|||
*/
|
||||
public abstract void writeTo(StreamOutput out) throws IOException;
|
||||
|
||||
/**
|
||||
* Clone the model, returning an exact copy
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
public abstract MovAvgModel clone();
|
||||
|
||||
/**
|
||||
* Abstract class which also provides some concrete parsing functionality.
|
||||
*/
|
||||
|
|
|
@ -40,6 +40,22 @@ public class SimpleModel extends MovAvgModel {
|
|||
|
||||
protected static final ParseField NAME_FIELD = new ParseField("simple");
|
||||
|
||||
|
||||
@Override
|
||||
public boolean canBeMinimized() {
|
||||
return false;
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel neighboringModel() {
|
||||
return new SimpleModel();
|
||||
}
|
||||
|
||||
@Override
|
||||
public MovAvgModel clone() {
|
||||
return new SimpleModel();
|
||||
}
|
||||
|
||||
@Override
|
||||
protected <T extends Number> double[] doPredict(Collection<T> values, int numPredictions) {
|
||||
double[] predictions = new double[numPredictions];
|
||||
|
|
|
@ -25,8 +25,7 @@ import com.google.common.collect.EvictingQueue;
|
|||
import org.elasticsearch.action.index.IndexRequestBuilder;
|
||||
import org.elasticsearch.action.search.SearchPhaseExecutionException;
|
||||
import org.elasticsearch.action.search.SearchResponse;
|
||||
import org.elasticsearch.index.query.RangeQueryBuilder;
|
||||
import org.elasticsearch.search.aggregations.bucket.filter.InternalFilter;
|
||||
import org.elasticsearch.search.SearchParseException;
|
||||
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
|
||||
import org.elasticsearch.search.aggregations.bucket.histogram.InternalHistogram;
|
||||
import org.elasticsearch.search.aggregations.bucket.histogram.InternalHistogram.Bucket;
|
||||
|
@ -45,7 +44,6 @@ import java.util.*;
|
|||
|
||||
import static org.elasticsearch.common.xcontent.XContentFactory.jsonBuilder;
|
||||
import static org.elasticsearch.search.aggregations.AggregationBuilders.avg;
|
||||
import static org.elasticsearch.search.aggregations.AggregationBuilders.filter;
|
||||
import static org.elasticsearch.search.aggregations.AggregationBuilders.histogram;
|
||||
import static org.elasticsearch.search.aggregations.AggregationBuilders.max;
|
||||
import static org.elasticsearch.search.aggregations.AggregationBuilders.min;
|
||||
|
@ -55,8 +53,6 @@ import static org.elasticsearch.search.aggregations.pipeline.PipelineAggregatorB
|
|||
import static org.elasticsearch.test.hamcrest.ElasticsearchAssertions.assertSearchResponse;
|
||||
import static org.hamcrest.Matchers.closeTo;
|
||||
import static org.hamcrest.Matchers.equalTo;
|
||||
import static org.hamcrest.Matchers.greaterThanOrEqualTo;
|
||||
import static org.hamcrest.Matchers.lessThanOrEqualTo;
|
||||
import static org.hamcrest.core.IsNull.notNullValue;
|
||||
import static org.hamcrest.core.IsNull.nullValue;
|
||||
|
||||
|
@ -83,7 +79,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
|
||||
|
||||
enum MovAvgType {
|
||||
SIMPLE ("simple"), LINEAR("linear"), EWMA("ewma"), HOLT("holt"), HOLT_WINTERS("holt_winters");
|
||||
SIMPLE ("simple"), LINEAR("linear"), EWMA("ewma"), HOLT("holt"), HOLT_WINTERS("holt_winters"), HOLT_BIG_MINIMIZE("holt");
|
||||
|
||||
private final String name;
|
||||
|
||||
|
@ -136,7 +132,12 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
|
||||
for (MovAvgType type : MovAvgType.values()) {
|
||||
for (MetricTarget target : MetricTarget.values()) {
|
||||
setupExpected(type, target);
|
||||
if (type.equals(MovAvgType.HOLT_BIG_MINIMIZE)) {
|
||||
setupExpected(type, target, numBuckets);
|
||||
} else {
|
||||
setupExpected(type, target, windowSize);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -169,7 +170,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
* @param type The moving average model to use
|
||||
* @param target The document field "target", e.g. _count or a field value
|
||||
*/
|
||||
private void setupExpected(MovAvgType type, MetricTarget target) {
|
||||
private void setupExpected(MovAvgType type, MetricTarget target, int windowSize) {
|
||||
ArrayList<Double> values = new ArrayList<>(numBuckets);
|
||||
EvictingQueue<Double> window = EvictingQueue.create(windowSize);
|
||||
|
||||
|
@ -209,6 +210,9 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
case HOLT:
|
||||
values.add(holt(window));
|
||||
break;
|
||||
case HOLT_BIG_MINIMIZE:
|
||||
values.add(holt(window));
|
||||
break;
|
||||
case HOLT_WINTERS:
|
||||
// HW needs at least 2 periods of data to start
|
||||
if (window.size() >= period * 2) {
|
||||
|
@ -226,7 +230,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
window.offer(metricValue);
|
||||
|
||||
}
|
||||
testValues.put(type.toString() + "_" + target.toString(), values);
|
||||
testValues.put(type.name() + "_" + target.name(), values);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -349,12 +353,11 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
// Calculate the slopes between first and second season for each period
|
||||
for (int i = 0; i < period; i++) {
|
||||
s += vs[i];
|
||||
b += (vs[i] - vs[i + period]) / 2;
|
||||
b += (vs[i + period] - vs[i]) / period;
|
||||
}
|
||||
s /= (double) period;
|
||||
b /= (double) period;
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
|
||||
// Calculate first seasonal
|
||||
if (Double.compare(s, 0.0) == 0 || Double.compare(s, -0.0) == 0) {
|
||||
|
@ -377,18 +380,20 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
if (seasonalityType.equals(HoltWintersModel.SeasonalityType.MULTIPLICATIVE)) {
|
||||
seasonal[i] = gamma * (vs[i] / (last_s + last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
} else {
|
||||
seasonal[i] = gamma * (vs[i] - (last_s + last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
seasonal[i] = gamma * (vs[i] - (last_s - last_b )) + (1 - gamma) * seasonal[i - period];
|
||||
}
|
||||
|
||||
last_s = s;
|
||||
last_b = b;
|
||||
}
|
||||
|
||||
int seasonCounter = (window.size() - 1) - period;
|
||||
int idx = window.size() - period + (0 % period);
|
||||
|
||||
// TODO perhaps pad out seasonal to a power of 2 and use a mask instead of modulo?
|
||||
if (seasonalityType.equals(HoltWintersModel.SeasonalityType.MULTIPLICATIVE)) {
|
||||
return s + (0 * b) * seasonal[seasonCounter % window.size()];
|
||||
return (s + (1 * b)) * seasonal[idx];
|
||||
} else {
|
||||
return s + (0 * b) + seasonal[seasonCounter % window.size()];
|
||||
return s + (1 * b) + seasonal[idx];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -425,8 +430,8 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
List<? extends Bucket> buckets = histo.getBuckets();
|
||||
assertThat("Size of buckets array is not correct.", buckets.size(), equalTo(mockHisto.size()));
|
||||
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.SIMPLE.toString() + "_" + MetricTarget.COUNT.toString());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.SIMPLE.toString() + "_" + MetricTarget.VALUE.toString());
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.SIMPLE.name() + "_" + MetricTarget.COUNT.name());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.SIMPLE.name() + "_" + MetricTarget.VALUE.name());
|
||||
|
||||
Iterator<? extends Histogram.Bucket> actualIter = buckets.iterator();
|
||||
Iterator<PipelineAggregationHelperTests.MockBucket> expectedBucketIter = mockHisto.iterator();
|
||||
|
@ -477,8 +482,8 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
List<? extends Bucket> buckets = histo.getBuckets();
|
||||
assertThat("Size of buckets array is not correct.", buckets.size(), equalTo(mockHisto.size()));
|
||||
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.LINEAR.toString() + "_" + MetricTarget.COUNT.toString());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.LINEAR.toString() + "_" + MetricTarget.VALUE.toString());
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.LINEAR.name() + "_" + MetricTarget.COUNT.name());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.LINEAR.name() + "_" + MetricTarget.VALUE.name());
|
||||
|
||||
Iterator<? extends Histogram.Bucket> actualIter = buckets.iterator();
|
||||
Iterator<PipelineAggregationHelperTests.MockBucket> expectedBucketIter = mockHisto.iterator();
|
||||
|
@ -529,8 +534,8 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
List<? extends Bucket> buckets = histo.getBuckets();
|
||||
assertThat("Size of buckets array is not correct.", buckets.size(), equalTo(mockHisto.size()));
|
||||
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.EWMA.toString() + "_" + MetricTarget.COUNT.toString());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.EWMA.toString() + "_" + MetricTarget.VALUE.toString());
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.EWMA.name() + "_" + MetricTarget.COUNT.name());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.EWMA.name() + "_" + MetricTarget.VALUE.name());
|
||||
|
||||
Iterator<? extends Histogram.Bucket> actualIter = buckets.iterator();
|
||||
Iterator<PipelineAggregationHelperTests.MockBucket> expectedBucketIter = mockHisto.iterator();
|
||||
|
@ -581,8 +586,8 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
List<? extends Bucket> buckets = histo.getBuckets();
|
||||
assertThat("Size of buckets array is not correct.", buckets.size(), equalTo(mockHisto.size()));
|
||||
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.HOLT.toString() + "_" + MetricTarget.COUNT.toString());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.HOLT.toString() + "_" + MetricTarget.VALUE.toString());
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.HOLT.name() + "_" + MetricTarget.COUNT.name());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.HOLT.name() + "_" + MetricTarget.VALUE.name());
|
||||
|
||||
Iterator<? extends Histogram.Bucket> actualIter = buckets.iterator();
|
||||
Iterator<PipelineAggregationHelperTests.MockBucket> expectedBucketIter = mockHisto.iterator();
|
||||
|
@ -618,12 +623,14 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
.modelBuilder(new HoltWintersModel.HoltWintersModelBuilder()
|
||||
.alpha(alpha).beta(beta).gamma(gamma).period(period).seasonalityType(seasonalityType))
|
||||
.gapPolicy(gapPolicy)
|
||||
.minimize(false)
|
||||
.setBucketsPaths("_count"))
|
||||
.subAggregation(movingAvg("movavg_values")
|
||||
.window(windowSize)
|
||||
.modelBuilder(new HoltWintersModel.HoltWintersModelBuilder()
|
||||
.alpha(alpha).beta(beta).gamma(gamma).period(period).seasonalityType(seasonalityType))
|
||||
.gapPolicy(gapPolicy)
|
||||
.minimize(false)
|
||||
.setBucketsPaths("the_metric"))
|
||||
).execute().actionGet();
|
||||
|
||||
|
@ -635,8 +642,8 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
List<? extends Bucket> buckets = histo.getBuckets();
|
||||
assertThat("Size of buckets array is not correct.", buckets.size(), equalTo(mockHisto.size()));
|
||||
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.HOLT_WINTERS.toString() + "_" + MetricTarget.COUNT.toString());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.HOLT_WINTERS.toString() + "_" + MetricTarget.VALUE.toString());
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.HOLT_WINTERS.name() + "_" + MetricTarget.COUNT.name());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.HOLT_WINTERS.name() + "_" + MetricTarget.VALUE.name());
|
||||
|
||||
Iterator<? extends Histogram.Bucket> actualIter = buckets.iterator();
|
||||
Iterator<PipelineAggregationHelperTests.MockBucket> expectedBucketIter = mockHisto.iterator();
|
||||
|
@ -1038,6 +1045,230 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
|
|||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void HoltWintersMinimization() {
|
||||
|
||||
SearchResponse response = client()
|
||||
.prepareSearch("idx").setTypes("type")
|
||||
.addAggregation(
|
||||
histogram("histo").field(INTERVAL_FIELD).interval(interval)
|
||||
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
|
||||
.subAggregation(metric)
|
||||
.subAggregation(movingAvg("movavg_counts")
|
||||
.window(windowSize)
|
||||
.modelBuilder(new HoltWintersModel.HoltWintersModelBuilder()
|
||||
.period(period).seasonalityType(seasonalityType))
|
||||
.gapPolicy(gapPolicy)
|
||||
.minimize(true)
|
||||
.setBucketsPaths("_count"))
|
||||
.subAggregation(movingAvg("movavg_values")
|
||||
.window(windowSize)
|
||||
.modelBuilder(new HoltWintersModel.HoltWintersModelBuilder()
|
||||
.period(period).seasonalityType(seasonalityType))
|
||||
.gapPolicy(gapPolicy)
|
||||
.minimize(true)
|
||||
.setBucketsPaths("the_metric"))
|
||||
).execute().actionGet();
|
||||
|
||||
assertSearchResponse(response);
|
||||
|
||||
InternalHistogram<Bucket> histo = response.getAggregations().get("histo");
|
||||
assertThat(histo, notNullValue());
|
||||
assertThat(histo.getName(), equalTo("histo"));
|
||||
List<? extends Bucket> buckets = histo.getBuckets();
|
||||
assertThat("Size of buckets array is not correct.", buckets.size(), equalTo(mockHisto.size()));
|
||||
|
||||
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.HOLT_WINTERS.name() + "_" + MetricTarget.COUNT.name());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.HOLT_WINTERS.name() + "_" + MetricTarget.VALUE.name());
|
||||
|
||||
Iterator<? extends Histogram.Bucket> actualIter = buckets.iterator();
|
||||
Iterator<PipelineAggregationHelperTests.MockBucket> expectedBucketIter = mockHisto.iterator();
|
||||
Iterator<Double> expectedCountsIter = expectedCounts.iterator();
|
||||
Iterator<Double> expectedValueIter = expectedValues.iterator();
|
||||
|
||||
// The minimizer is stochastic, so just make sure all the values coming back aren't null
|
||||
while (actualIter.hasNext()) {
|
||||
|
||||
Histogram.Bucket actual = actualIter.next();
|
||||
PipelineAggregationHelperTests.MockBucket expected = expectedBucketIter.next();
|
||||
Double expectedCount = expectedCountsIter.next();
|
||||
Double expectedValue = expectedValueIter.next();
|
||||
|
||||
assertThat("keys do not match", ((Number) actual.getKey()).longValue(), equalTo(expected.key));
|
||||
assertThat("doc counts do not match", actual.getDocCount(), equalTo((long)expected.count));
|
||||
|
||||
SimpleValue countMovAvg = actual.getAggregations().get("movavg_counts");
|
||||
SimpleValue valuesMovAvg = actual.getAggregations().get("movavg_values");
|
||||
|
||||
if (expectedCount == null) {
|
||||
//this bucket wasn't supposed to have a value (empty, skipped, etc), so
|
||||
//movavg should be null too
|
||||
assertThat(countMovAvg, nullValue());
|
||||
} else {
|
||||
|
||||
// Note that we don't compare against the mock values, since those are assuming
|
||||
// a non-minimized set of coefficients. Just check for not-nullness
|
||||
assertThat(countMovAvg, notNullValue());
|
||||
}
|
||||
|
||||
if (expectedValue == null) {
|
||||
//this bucket wasn't supposed to have a value (empty, skipped, etc), so
|
||||
//movavg should be null too
|
||||
assertThat(valuesMovAvg, nullValue());
|
||||
} else {
|
||||
|
||||
// Note that we don't compare against the mock values, since those are assuming
|
||||
// a non-minimized set of coefficients. Just check for not-nullness
|
||||
assertThat(valuesMovAvg, notNullValue());
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* If the minimizer is turned on, but there isn't enough data to minimize with, it will simply use
|
||||
* the default settings. Which means our mock histo will match the generated result (which it won't
|
||||
* if the minimizer is actually working, since the coefficients will be different and thus generate different
|
||||
* data)
|
||||
*
|
||||
* We can simulate this by setting the window size == size of histo
|
||||
*/
|
||||
@Test
|
||||
public void minimizeNotEnoughData() {
|
||||
|
||||
SearchResponse response = client()
|
||||
.prepareSearch("idx").setTypes("type")
|
||||
.addAggregation(
|
||||
histogram("histo").field(INTERVAL_FIELD).interval(interval)
|
||||
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
|
||||
.subAggregation(metric)
|
||||
.subAggregation(movingAvg("movavg_counts")
|
||||
.window(numBuckets)
|
||||
.modelBuilder(new HoltLinearModel.HoltLinearModelBuilder().alpha(alpha).beta(beta))
|
||||
.gapPolicy(gapPolicy)
|
||||
.minimize(true)
|
||||
.setBucketsPaths("_count"))
|
||||
.subAggregation(movingAvg("movavg_values")
|
||||
.window(numBuckets)
|
||||
.modelBuilder(new HoltLinearModel.HoltLinearModelBuilder().alpha(alpha).beta(beta))
|
||||
.gapPolicy(gapPolicy)
|
||||
.minimize(true)
|
||||
.setBucketsPaths("the_metric"))
|
||||
).execute().actionGet();
|
||||
|
||||
assertSearchResponse(response);
|
||||
|
||||
InternalHistogram<Bucket> histo = response.getAggregations().get("histo");
|
||||
assertThat(histo, notNullValue());
|
||||
assertThat(histo.getName(), equalTo("histo"));
|
||||
List<? extends Bucket> buckets = histo.getBuckets();
|
||||
assertThat("Size of buckets array is not correct.", buckets.size(), equalTo(mockHisto.size()));
|
||||
|
||||
List<Double> expectedCounts = testValues.get(MovAvgType.HOLT_BIG_MINIMIZE.name() + "_" + MetricTarget.COUNT.name());
|
||||
List<Double> expectedValues = testValues.get(MovAvgType.HOLT_BIG_MINIMIZE.name() + "_" + MetricTarget.VALUE.name());
|
||||
|
||||
Iterator<? extends Histogram.Bucket> actualIter = buckets.iterator();
|
||||
Iterator<PipelineAggregationHelperTests.MockBucket> expectedBucketIter = mockHisto.iterator();
|
||||
Iterator<Double> expectedCountsIter = expectedCounts.iterator();
|
||||
Iterator<Double> expectedValuesIter = expectedValues.iterator();
|
||||
|
||||
while (actualIter.hasNext()) {
|
||||
assertValidIterators(expectedBucketIter, expectedCountsIter, expectedValuesIter);
|
||||
|
||||
Histogram.Bucket actual = actualIter.next();
|
||||
PipelineAggregationHelperTests.MockBucket expected = expectedBucketIter.next();
|
||||
Double expectedCount = expectedCountsIter.next();
|
||||
Double expectedValue = expectedValuesIter.next();
|
||||
|
||||
assertThat("keys do not match", ((Number) actual.getKey()).longValue(), equalTo(expected.key));
|
||||
assertThat("doc counts do not match", actual.getDocCount(), equalTo((long)expected.count));
|
||||
|
||||
assertBucketContents(actual, expectedCount, expectedValue);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Only some models can be minimized, should throw exception for: simple, linear
|
||||
*/
|
||||
@Test
|
||||
public void checkIfNonTunableCanBeMinimized() {
|
||||
|
||||
try {
|
||||
client()
|
||||
.prepareSearch("idx").setTypes("type")
|
||||
.addAggregation(
|
||||
histogram("histo").field(INTERVAL_FIELD).interval(interval)
|
||||
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
|
||||
.subAggregation(metric)
|
||||
.subAggregation(movingAvg("movavg_counts")
|
||||
.window(numBuckets)
|
||||
.modelBuilder(new SimpleModel.SimpleModelBuilder())
|
||||
.gapPolicy(gapPolicy)
|
||||
.minimize(true)
|
||||
.setBucketsPaths("_count"))
|
||||
).execute().actionGet();
|
||||
fail("Simple Model cannot be minimized, but an exception was not thrown");
|
||||
} catch (SearchPhaseExecutionException e) {
|
||||
// All good
|
||||
}
|
||||
|
||||
try {
|
||||
client()
|
||||
.prepareSearch("idx").setTypes("type")
|
||||
.addAggregation(
|
||||
histogram("histo").field(INTERVAL_FIELD).interval(interval)
|
||||
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
|
||||
.subAggregation(metric)
|
||||
.subAggregation(movingAvg("movavg_counts")
|
||||
.window(numBuckets)
|
||||
.modelBuilder(new LinearModel.LinearModelBuilder())
|
||||
.gapPolicy(gapPolicy)
|
||||
.minimize(true)
|
||||
.setBucketsPaths("_count"))
|
||||
).execute().actionGet();
|
||||
fail("Linear Model cannot be minimized, but an exception was not thrown");
|
||||
} catch (SearchPhaseExecutionException e) {
|
||||
// all good
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* These models are all minimizable, so they should not throw exceptions
|
||||
*/
|
||||
@Test
|
||||
public void checkIfTunableCanBeMinimized() {
|
||||
|
||||
MovAvgModelBuilder[] builders = new MovAvgModelBuilder[]{
|
||||
new EwmaModel.EWMAModelBuilder(),
|
||||
new HoltLinearModel.HoltLinearModelBuilder(),
|
||||
new HoltWintersModel.HoltWintersModelBuilder()
|
||||
};
|
||||
|
||||
for (MovAvgModelBuilder builder : builders) {
|
||||
try {
|
||||
client()
|
||||
.prepareSearch("idx").setTypes("type")
|
||||
.addAggregation(
|
||||
histogram("histo").field(INTERVAL_FIELD).interval(interval)
|
||||
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
|
||||
.subAggregation(metric)
|
||||
.subAggregation(movingAvg("movavg_counts")
|
||||
.window(numBuckets)
|
||||
.modelBuilder(builder)
|
||||
.gapPolicy(gapPolicy)
|
||||
.minimize(true)
|
||||
.setBucketsPaths("_count"))
|
||||
).execute().actionGet();
|
||||
} catch (SearchPhaseExecutionException e) {
|
||||
fail("Model [" + builder.toString() + "] can be minimized, but an exception was thrown");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
private void assertValidIterators(Iterator expectedBucketIter, Iterator expectedCountsIter, Iterator expectedValuesIter) {
|
||||
if (!expectedBucketIter.hasNext()) {
|
||||
|
|
|
@ -44,6 +44,8 @@ A `moving_avg` aggregation looks like this in isolation:
|
|||
|`model` |The moving average weighting model that we wish to use |Optional |`simple`
|
||||
|`gap_policy` |Determines what should happen when a gap in the data is encountered. |Optional |`insert_zero`
|
||||
|`window` |The size of window to "slide" across the histogram. |Optional |`5`
|
||||
|`minimize` |If the model should be algorithmically minimized. See <<movavg-minimizer, Minimization>> for more
|
||||
details |Optional |`false` for most models
|
||||
|`settings` |Model-specific settings, contents which differ depending on the model specified. |Optional |
|
||||
|===
|
||||
|
||||
|
@ -100,6 +102,7 @@ the values from a `simple` moving average tend to "lag" behind the real data.
|
|||
"the_movavg":{
|
||||
"moving_avg":{
|
||||
"buckets_path": "the_sum",
|
||||
"window" : 30,
|
||||
"model" : "simple"
|
||||
}
|
||||
}
|
||||
|
@ -135,6 +138,7 @@ the "lag" behind the data's mean, since older points have less influence.
|
|||
"the_movavg":{
|
||||
"moving_avg":{
|
||||
"buckets_path": "the_sum",
|
||||
"window" : 30,
|
||||
"model" : "linear"
|
||||
}
|
||||
}
|
||||
|
@ -165,7 +169,9 @@ setting. Small values make the weight decay slowly, which provides greater smoo
|
|||
portion of the window. Larger valuers make the weight decay quickly, which reduces the impact of older values on the
|
||||
moving average. This tends to make the moving average track the data more closely but with less smoothing.
|
||||
|
||||
The default value of `alpha` is `0.5`, and the setting accepts any float from 0-1 inclusive.
|
||||
The default value of `alpha` is `0.3`, and the setting accepts any float from 0-1 inclusive.
|
||||
|
||||
The EWMA model can be <<movavg-minimizer, Minimized>>
|
||||
|
||||
[source,js]
|
||||
--------------------------------------------------
|
||||
|
@ -173,6 +179,7 @@ The default value of `alpha` is `0.5`, and the setting accepts any float from 0-
|
|||
"the_movavg":{
|
||||
"moving_avg":{
|
||||
"buckets_path": "the_sum",
|
||||
"window" : 30,
|
||||
"model" : "ewma",
|
||||
"settings" : {
|
||||
"alpha" : 0.5
|
||||
|
@ -204,7 +211,9 @@ smoothed data). The trend value is also exponentially weighted.
|
|||
|
||||
Values are produced by multiplying the level and trend components.
|
||||
|
||||
The default value of `alpha` and `beta` is `0.5`, and the settings accept any float from 0-1 inclusive.
|
||||
The default value of `alpha` is `0.3` and `beta` is `0.1`. The settings accept any float from 0-1 inclusive.
|
||||
|
||||
The Holt-Linear model can be <<movavg-minimizer, Minimized>>
|
||||
|
||||
[source,js]
|
||||
--------------------------------------------------
|
||||
|
@ -212,6 +221,7 @@ The default value of `alpha` and `beta` is `0.5`, and the settings accept any fl
|
|||
"the_movavg":{
|
||||
"moving_avg":{
|
||||
"buckets_path": "the_sum",
|
||||
"window" : 30,
|
||||
"model" : "holt",
|
||||
"settings" : {
|
||||
"alpha" : 0.5,
|
||||
|
@ -270,15 +280,18 @@ Additive seasonality is the default; it can also be specified by setting `"type"
|
|||
when the seasonal affect is additive to your data. E.g. you could simply subtract the seasonal effect to "de-seasonalize"
|
||||
your data into a flat trend.
|
||||
|
||||
The default value of `alpha`, `beta` and `gamma` is `0.5`, and the settings accept any float from 0-1 inclusive.
|
||||
The default values of `alpha` and `gamma` are `0.3` while `beta` is `0.1`. The settings accept any float from 0-1 inclusive.
|
||||
The default value of `period` is `1`.
|
||||
|
||||
The additive Holt-Winters model can be <<movavg-minimizer, Minimized>>
|
||||
|
||||
[source,js]
|
||||
--------------------------------------------------
|
||||
{
|
||||
"the_movavg":{
|
||||
"moving_avg":{
|
||||
"buckets_path": "the_sum",
|
||||
"window" : 30,
|
||||
"model" : "holt_winters",
|
||||
"settings" : {
|
||||
"type" : "add",
|
||||
|
@ -301,9 +314,11 @@ image::images/pipeline_movavg/triple.png[]
|
|||
Multiplicative is specified by setting `"type": "mult"`. This variety is preferred when the seasonal affect is
|
||||
multiplied against your data. E.g. if the seasonal affect is x5 the data, rather than simply adding to it.
|
||||
|
||||
The default value of `alpha`, `beta` and `gamma` is `0.5`, and the settings accept any float from 0-1 inclusive.
|
||||
The default values of `alpha` and `gamma` are `0.3` while `beta` is `0.1`. The settings accept any float from 0-1 inclusive.
|
||||
The default value of `period` is `1`.
|
||||
|
||||
The multiplicative Holt-Winters model can be <<movavg-minimizer, Minimized>>
|
||||
|
||||
[WARNING]
|
||||
======
|
||||
Multiplicative Holt-Winters works by dividing each data point by the seasonal value. This is problematic if any of
|
||||
|
@ -319,6 +334,7 @@ you can disable this behavior with `pad: false`
|
|||
"the_movavg":{
|
||||
"moving_avg":{
|
||||
"buckets_path": "the_sum",
|
||||
"window" : 30,
|
||||
"model" : "holt_winters",
|
||||
"settings" : {
|
||||
"type" : "mult",
|
||||
|
@ -347,6 +363,7 @@ as your buckets:
|
|||
"the_movavg":{
|
||||
"moving_avg":{
|
||||
"buckets_path": "the_sum",
|
||||
"window" : 30,
|
||||
"model" : "simple",
|
||||
"predict" 10
|
||||
}
|
||||
|
@ -381,3 +398,53 @@ fluctuations into the model:
|
|||
[[holt_winters_prediction_global]]
|
||||
.Holt-Winters moving average with window of size 120, predict = 25, alpha = 0.8, beta = 0.2, gamma = 0.7, period = 30
|
||||
image::images/pipeline_movavg/triple_prediction.png[]
|
||||
|
||||
[[movavg-minimizer]]
|
||||
==== Minimization
|
||||
|
||||
Some of the models (EWMA, Holt-Linear, Holt-Winters) require one or more parameters to be configured. Parameter choice
|
||||
can be tricky and sometimes non-intuitive. Furthermore, small deviations in these parameters can sometimes have a drastic
|
||||
effect on the output moving average.
|
||||
|
||||
For that reason, the three "tunable" models can be algorithmically *minimized*. Minimization is a process where parameters
|
||||
are tweaked until the predictions generated by the model closely match the output data. Minimization is not fullproof
|
||||
and can be susceptible to overfitting, but it often gives better results than hand-tuning.
|
||||
|
||||
Minimization is disabled by default for `ewma` and `holt_linear`, while it is enabled by default for `holt_winters`.
|
||||
Minimization is most useful with Holt-Winters, since it helps improve the accuracy of the predictions. EWMA and
|
||||
Holt-Linear are not great predictors, and mostly used for smoothing data, so minimization is less useful on those
|
||||
models.
|
||||
|
||||
Minimization is enabled/disabled via the `minimize` parameter:
|
||||
|
||||
[source,js]
|
||||
--------------------------------------------------
|
||||
{
|
||||
"the_movavg":{
|
||||
"moving_avg":{
|
||||
"buckets_path": "the_sum",
|
||||
"model" : "holt_winters",
|
||||
"window" : 30,
|
||||
"minimize" : true, <1>
|
||||
"settings" : {
|
||||
"period" : 7
|
||||
}
|
||||
}
|
||||
}
|
||||
--------------------------------------------------
|
||||
<1> Minimization is enabled with the `minimize` parameter
|
||||
|
||||
When enabled, minimization will find the optimal values for `alpha`, `beta` and `gamma`. The user should still provide
|
||||
appropriate values for `window`, `period` and `type`.
|
||||
|
||||
[WARNING]
|
||||
======
|
||||
Minimization works by running a stochastic process called *simulated annealing*. This process will usually generate
|
||||
a good solution, but is not guaranteed to find the global optimum. It also requires some amount of additional
|
||||
computational power, since the model needs to be re-run multiple times as the values are tweaked. The run-time of
|
||||
minimization is linear to the size of the window being processed: excessively large windows may cause latency.
|
||||
|
||||
Finally, minimization fits the model to the last `n` values, where `n = window`. This generally produces
|
||||
better forecasts into the future, since the parameters are tuned around the end of the series. It can, however, generate
|
||||
poorer fitting moving averages at the beginning of the series.
|
||||
======
|
Loading…
Reference in New Issue