Make the heuristic to compute the default shard size less aggressive.

The current heuristic to compute a default shard size is pretty aggressive,
it returns `max(10, number_of_shards * size)` as a value for the shard size.
I think making it less aggressive has the benefit that it would reduce the
likelyness of running into OOME when there are many shards (yearly
aggregations with time-based indices can make numbers of shards in the
thousands) and make the use of breadth-first more likely/efficient.

This commit replaces the heuristic with `size * 1.5 + 10`, which is enough
to have good accuracy on zipfian distributions.
This commit is contained in:
Adrien Grand 2016-07-28 16:24:35 +02:00
parent 6b7d40929c
commit dcc598c414
3 changed files with 201 additions and 9 deletions

View File

@ -21,7 +21,9 @@ package org.elasticsearch.search.aggregations.bucket;
/**
* Helper functions for common Bucketing functions
*/
public class BucketUtils {
public final class BucketUtils {
private BucketUtils() {}
/**
* Heuristic used to determine the size of shard-side PriorityQueues when
@ -34,16 +36,22 @@ public class BucketUtils {
* @return A suggested default for the size of any shard-side PriorityQueues
*/
public static int suggestShardSideQueueSize(int finalSize, int numberOfShards) {
assert numberOfShards >= 1;
if (finalSize < 1) {
throw new IllegalArgumentException("size must be positive, got " + finalSize);
}
if (numberOfShards < 1) {
throw new IllegalArgumentException("number of shards must be positive, got " + numberOfShards);
}
if (numberOfShards == 1) {
// In the case of a single shard, we do not need to over-request
return finalSize;
}
//Cap the multiplier used for shards to avoid excessive data transfer
final long shardSampleSize = (long) finalSize * Math.min(10, numberOfShards);
// When finalSize is very small e.g. 1 and there is a low number of
// shards then we need to ensure we still gather a reasonable sample of statistics from each
// shard (at low cost) to improve the chances of the final result being accurate.
return (int) Math.min(Integer.MAX_VALUE, Math.max(10, shardSampleSize));
// Request 50% more buckets on the shards in order to improve accuracy
// as well as a small constant that should help with small values of 'size'
final long shardSampleSize = (long) (finalSize * 1.5 + 10);
return (int) Math.min(Integer.MAX_VALUE, shardSampleSize);
}
}

View File

@ -0,0 +1,183 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.bucket;
import org.elasticsearch.test.ESTestCase;
import static org.hamcrest.Matchers.greaterThanOrEqualTo;
public class BucketUtilsTests extends ESTestCase {
public void testBadInput() {
IllegalArgumentException e = expectThrows(IllegalArgumentException.class,
() -> BucketUtils.suggestShardSideQueueSize(0, 10));
assertEquals(e.getMessage(), "size must be positive, got 0");
e = expectThrows(IllegalArgumentException.class,
() -> BucketUtils.suggestShardSideQueueSize(10, 0));
assertEquals(e.getMessage(), "number of shards must be positive, got 0");
}
public void testOptimizesSingleShard() {
for (int iter = 0; iter < 10; ++iter) {
final int size = randomIntBetween(1, Integer.MAX_VALUE);
assertEquals(size, BucketUtils.suggestShardSideQueueSize( size, 1));
}
}
public void testOverFlow() {
for (int iter = 0; iter < 10; ++iter) {
final int size = Integer.MAX_VALUE - randomInt(10);
final int numberOfShards = randomIntBetween(1, 10);
final int shardSize = BucketUtils.suggestShardSideQueueSize( size, numberOfShards);
assertThat(shardSize, greaterThanOrEqualTo(shardSize));
}
}
public void testShardSizeIsGreaterThanGlobalSize() {
for (int iter = 0; iter < 10; ++iter) {
final int size = randomIntBetween(1, Integer.MAX_VALUE);
final int numberOfShards = randomIntBetween(1, 10);
final int shardSize = BucketUtils.suggestShardSideQueueSize( size, numberOfShards);
assertThat(shardSize, greaterThanOrEqualTo(size));
}
}
/*// You may use the code below to evaluate the impact of the BucketUtils.suggestShardSideQueueSize
// heuristic
public static void main(String[] args) {
final int numberOfUniqueTerms = 10000;
final int totalNumberOfTerms = 1000000;
final int numberOfShards = 10;
final double skew = 2; // parameter of the zipf distribution
final int size = 100;
double totalWeight = 0;
for (int rank = 1; rank <= numberOfUniqueTerms; ++rank) {
totalWeight += weight(rank, skew);
}
int[] terms = new int[totalNumberOfTerms];
int len = 0;
final int[] actualTopFreqs = new int[size];
for (int rank = 1; len < totalNumberOfTerms; ++rank) {
int freq = (int) (weight(rank, skew) / totalWeight * totalNumberOfTerms);
freq = Math.max(freq, 1);
Arrays.fill(terms, len, Math.min(len + freq, totalNumberOfTerms), rank - 1);
len += freq;
if (rank <= size) {
actualTopFreqs[rank-1] = freq;
}
}
final int maxTerm = terms[terms.length - 1] + 1;
// shuffle terms
Random r = new Random(0);
for (int i = terms.length - 1; i > 0; --i) {
final int swapWith = r.nextInt(i);
int tmp = terms[i];
terms[i] = terms[swapWith];
terms[swapWith] = tmp;
}
// distribute into shards like routing would
int[][] shards = new int[numberOfShards][];
int upTo = 0;
for (int i = 0; i < numberOfShards; ++i) {
shards[i] = Arrays.copyOfRange(terms, upTo, upTo + (terms.length - upTo) / (numberOfShards - i));
upTo += shards[i].length;
}
final int[][] topShards = new int[numberOfShards][];
final int shardSize = BucketUtils.suggestShardSideQueueSize(size, numberOfShards);
for (int shard = 0; shard < numberOfShards; ++shard) {
final int[] data = shards[shard];
final int[] freqs = new int[maxTerm];
for (int d : data) {
freqs[d]++;
}
int[] termIds = new int[maxTerm];
for (int i = 0; i < maxTerm; ++i) {
termIds[i] = i;
}
new InPlaceMergeSorter() {
@Override
protected void swap(int i, int j) {
int tmp = termIds[i];
termIds[i] = termIds[j];
termIds[j] = tmp;
tmp = freqs[i];
freqs[i] = freqs[j];
freqs[j] = tmp;
}
@Override
protected int compare(int i, int j) {
return freqs[j] - freqs[i];
}
}.sort(0, maxTerm);
Arrays.fill(freqs, shardSize, freqs.length, 0);
new InPlaceMergeSorter() {
@Override
protected void swap(int i, int j) {
int tmp = termIds[i];
termIds[i] = termIds[j];
termIds[j] = tmp;
tmp = freqs[i];
freqs[i] = freqs[j];
freqs[j] = tmp;
}
@Override
protected int compare(int i, int j) {
return termIds[i] - termIds[j];
}
}.sort(0, maxTerm);
topShards[shard] = freqs;
}
final int[] computedTopFreqs = new int[size];
for (int[] freqs : topShards) {
for (int i = 0; i < size; ++i) {
computedTopFreqs[i] += freqs[i];
}
}
int numErrors = 0;
int totalFreq = 0;
for (int i = 0; i < size; ++i) {
numErrors += Math.abs(computedTopFreqs[i] - actualTopFreqs[i]);
totalFreq += actualTopFreqs[i];
}
System.out.println("Number of unique terms: " + maxTerm);
System.out.println("Global freqs of top terms: " + Arrays.toString(actualTopFreqs));
System.out.println("Computed freqs of top terms: " + Arrays.toString(computedTopFreqs));
System.out.println("Number of errors: " + numErrors + "/" + totalFreq);
}
private static double weight(int rank, double skew) {
return 1d / Math.pow(rank, skew);
}*/
}

View File

@ -160,7 +160,8 @@ NOTE: `shard_size` cannot be smaller than `size` (as it doesn't make much sens
override it and reset it to be equal to `size`.
The default `shard_size` is a multiple of the `size` parameter which is dependant on the number of shards.
The default `shard_size` will be `size` if the search request needs to go to a single shard, and `(size * 1.5 + 10)`
otherwise.
==== Calculating Document Count Error