Fix use of time zone in date_histogram rewrite (#31407)

Currently, DateHistogramAggregationBuilder#rewriteTimeZone uses the aggregation
date math parser and time zone to check whether all values in a read have the
same timezone to speed up computation. However, the upper and lower bounds to
check are retrieved as longs in epoch_millis, so they don't need to get parsed
using a time zone or a parser other than "epoch_millis". This changes this
behaviour that was causing problems when the field type mapping was specifying
only "epoch_millis" as a format but a different timezone than UTC was used.

Closes #31392
This commit is contained in:
Christoph Büscher 2018-06-20 10:23:39 +02:00 committed by GitHub
parent 401800d958
commit df10704ffc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 40 additions and 8 deletions

View File

@ -25,6 +25,8 @@ import org.apache.lucene.index.SortedNumericDocValues;
import org.apache.lucene.search.DocIdSetIterator; import org.apache.lucene.search.DocIdSetIterator;
import org.elasticsearch.common.io.stream.StreamInput; import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.io.stream.StreamOutput; import org.elasticsearch.common.io.stream.StreamOutput;
import org.elasticsearch.common.joda.DateMathParser;
import org.elasticsearch.common.joda.Joda;
import org.elasticsearch.common.rounding.DateTimeUnit; import org.elasticsearch.common.rounding.DateTimeUnit;
import org.elasticsearch.common.rounding.Rounding; import org.elasticsearch.common.rounding.Rounding;
import org.elasticsearch.common.unit.TimeValue; import org.elasticsearch.common.unit.TimeValue;
@ -36,7 +38,6 @@ import org.elasticsearch.index.fielddata.IndexNumericFieldData;
import org.elasticsearch.index.mapper.MappedFieldType; import org.elasticsearch.index.mapper.MappedFieldType;
import org.elasticsearch.index.mapper.MappedFieldType.Relation; import org.elasticsearch.index.mapper.MappedFieldType.Relation;
import org.elasticsearch.index.query.QueryShardContext; import org.elasticsearch.index.query.QueryShardContext;
import org.elasticsearch.search.DocValueFormat;
import org.elasticsearch.search.aggregations.AggregationBuilder; import org.elasticsearch.search.aggregations.AggregationBuilder;
import org.elasticsearch.search.aggregations.AggregatorFactories.Builder; import org.elasticsearch.search.aggregations.AggregatorFactories.Builder;
import org.elasticsearch.search.aggregations.AggregatorFactory; import org.elasticsearch.search.aggregations.AggregatorFactory;
@ -59,6 +60,7 @@ import org.joda.time.DateTimeZone;
import java.io.IOException; import java.io.IOException;
import java.util.HashMap; import java.util.HashMap;
import java.util.List; import java.util.List;
import java.util.Locale;
import java.util.Map; import java.util.Map;
import java.util.Objects; import java.util.Objects;
@ -70,6 +72,7 @@ import static java.util.Collections.unmodifiableMap;
public class DateHistogramAggregationBuilder extends ValuesSourceAggregationBuilder<ValuesSource.Numeric, DateHistogramAggregationBuilder> public class DateHistogramAggregationBuilder extends ValuesSourceAggregationBuilder<ValuesSource.Numeric, DateHistogramAggregationBuilder>
implements MultiBucketAggregationBuilder { implements MultiBucketAggregationBuilder {
public static final String NAME = "date_histogram"; public static final String NAME = "date_histogram";
private static DateMathParser EPOCH_MILLIS_PARSER = new DateMathParser(Joda.forPattern("epoch_millis", Locale.ROOT));
public static final Map<String, DateTimeUnit> DATE_FIELD_UNITS; public static final Map<String, DateTimeUnit> DATE_FIELD_UNITS;
@ -380,7 +383,7 @@ public class DateHistogramAggregationBuilder extends ValuesSourceAggregationBuil
Long anyInstant = null; Long anyInstant = null;
final IndexNumericFieldData fieldData = context.getForField(ft); final IndexNumericFieldData fieldData = context.getForField(ft);
for (LeafReaderContext ctx : reader.leaves()) { for (LeafReaderContext ctx : reader.leaves()) {
AtomicNumericFieldData leafFD = ((IndexNumericFieldData) fieldData).load(ctx); AtomicNumericFieldData leafFD = fieldData.load(ctx);
SortedNumericDocValues values = leafFD.getLongValues(); SortedNumericDocValues values = leafFD.getLongValues();
if (values.nextDoc() != DocIdSetIterator.NO_MORE_DOCS) { if (values.nextDoc() != DocIdSetIterator.NO_MORE_DOCS) {
anyInstant = values.nextValue(); anyInstant = values.nextValue();
@ -406,11 +409,8 @@ public class DateHistogramAggregationBuilder extends ValuesSourceAggregationBuil
// rounding rounds down, so 'nextTransition' is a good upper bound // rounding rounds down, so 'nextTransition' is a good upper bound
final long high = nextTransition; final long high = nextTransition;
final DocValueFormat format = ft.docValueFormat(null, null); if (ft.isFieldWithinQuery(reader, low, high, true, false, DateTimeZone.UTC, EPOCH_MILLIS_PARSER,
final Object formattedLow = format.format(low); context) == Relation.WITHIN) {
final Object formattedHigh = format.format(high);
if (ft.isFieldWithinQuery(reader, formattedLow, formattedHigh,
true, false, tz, null, context) == Relation.WITHIN) {
// All values in this reader have the same offset despite daylight saving times. // All values in this reader have the same offset despite daylight saving times.
// This is very common for location-based timezones such as Europe/Paris in // This is very common for location-based timezones such as Europe/Paris in
// combination with time-based indices. // combination with time-based indices.

View File

@ -34,6 +34,7 @@ import org.elasticsearch.plugins.Plugin;
import org.elasticsearch.script.Script; import org.elasticsearch.script.Script;
import org.elasticsearch.script.ScriptType; import org.elasticsearch.script.ScriptType;
import org.elasticsearch.search.aggregations.AggregationExecutionException; import org.elasticsearch.search.aggregations.AggregationExecutionException;
import org.elasticsearch.search.aggregations.BucketOrder;
import org.elasticsearch.search.aggregations.InternalAggregation; import org.elasticsearch.search.aggregations.InternalAggregation;
import org.elasticsearch.search.aggregations.bucket.histogram.DateHistogramInterval; import org.elasticsearch.search.aggregations.bucket.histogram.DateHistogramInterval;
import org.elasticsearch.search.aggregations.bucket.histogram.ExtendedBounds; import org.elasticsearch.search.aggregations.bucket.histogram.ExtendedBounds;
@ -41,7 +42,6 @@ import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;
import org.elasticsearch.search.aggregations.bucket.histogram.Histogram.Bucket; import org.elasticsearch.search.aggregations.bucket.histogram.Histogram.Bucket;
import org.elasticsearch.search.aggregations.metrics.avg.Avg; import org.elasticsearch.search.aggregations.metrics.avg.Avg;
import org.elasticsearch.search.aggregations.metrics.sum.Sum; import org.elasticsearch.search.aggregations.metrics.sum.Sum;
import org.elasticsearch.search.aggregations.BucketOrder;
import org.elasticsearch.test.ESIntegTestCase; import org.elasticsearch.test.ESIntegTestCase;
import org.hamcrest.Matchers; import org.hamcrest.Matchers;
import org.joda.time.DateTime; import org.joda.time.DateTime;
@ -1341,6 +1341,38 @@ public class DateHistogramIT extends ESIntegTestCase {
} }
} }
/**
* https://github.com/elastic/elasticsearch/issues/31392 demonstrates an edge case where a date field mapping with
* "format" = "epoch_millis" can lead for the date histogram aggregation to throw an error if a non-UTC time zone
* with daylight savings time is used. This test was added to check this is working now
* @throws ExecutionException
* @throws InterruptedException
*/
public void testRewriteTimeZone_EpochMillisFormat() throws InterruptedException, ExecutionException {
String index = "test31392";
assertAcked(client().admin().indices().prepareCreate(index).addMapping("type", "d", "type=date,format=epoch_millis").get());
indexRandom(true, client().prepareIndex(index, "type").setSource("d", "1477954800000"));
ensureSearchable(index);
SearchResponse response = client().prepareSearch(index).addAggregation(dateHistogram("histo").field("d")
.dateHistogramInterval(DateHistogramInterval.MONTH).timeZone(DateTimeZone.forID("Europe/Berlin"))).execute().actionGet();
assertSearchResponse(response);
Histogram histo = response.getAggregations().get("histo");
assertThat(histo.getBuckets().size(), equalTo(1));
assertThat(histo.getBuckets().get(0).getKeyAsString(), equalTo("1477954800000"));
assertThat(histo.getBuckets().get(0).getDocCount(), equalTo(1L));
response = client().prepareSearch(index).addAggregation(dateHistogram("histo").field("d")
.dateHistogramInterval(DateHistogramInterval.MONTH).timeZone(DateTimeZone.forID("Europe/Berlin")).format("yyyy-MM-dd"))
.execute().actionGet();
assertSearchResponse(response);
histo = response.getAggregations().get("histo");
assertThat(histo.getBuckets().size(), equalTo(1));
assertThat(histo.getBuckets().get(0).getKeyAsString(), equalTo("2016-11-01"));
assertThat(histo.getBuckets().get(0).getDocCount(), equalTo(1L));
internalCluster().wipeIndices(index);
}
/** /**
* When DST ends, local time turns back one hour, so between 2am and 4am wall time we should have four buckets: * When DST ends, local time turns back one hour, so between 2am and 4am wall time we should have four buckets:
* "2015-10-25T02:00:00.000+02:00", * "2015-10-25T02:00:00.000+02:00",