Aggs: Change the default `min_doc_count` to 0 on histograms.

The assumption is that gaps in histogram are generally undesirable, for instance
if you want to build a visualization from it. Additionally, we are building new
aggregations that require that there are no gaps to work correctly (eg.
derivatives).
This commit is contained in:
Adrien Grand 2015-04-30 14:55:34 +02:00
parent 969f53e399
commit e5be85d586
12 changed files with 67 additions and 131 deletions

View File

@ -139,6 +139,8 @@ equivalent to the former `pre_zone` option. Setting `time_zone` to a value like
being applied in the specified time zone but In addition to this, also the `pre_zone_adjust_large_interval` is removed because we
now always return dates and bucket keys in UTC.
Both the `histogram` and `date_histogram` aggregations now have a default `min_doc_count` of `0` instead of `1` previously.
`include`/`exclude` filtering on the `terms` aggregation now uses the same syntax as regexp queries instead of the Java syntax. While simple
regexps should still work, more complex ones might need some rewriting. Also, the `flags` parameter is not supported anymore.

View File

@ -119,7 +119,7 @@ Response:
Like with the normal <<search-aggregations-bucket-histogram-aggregation,histogram>>, both document level scripts and
value level scripts are supported. It is also possible to control the order of the returned buckets using the `order`
settings and filter the returned buckets based on a `min_doc_count` setting (by default all buckets with
`min_doc_count > 0` will be returned). This histogram also supports the `extended_bounds` setting, which enables extending
the bounds of the histogram beyond the data itself (to read more on why you'd want to do that please refer to the
explanation <<search-aggregations-bucket-histogram-aggregation-extended-bounds,here>>).
settings and filter the returned buckets based on a `min_doc_count` setting (by default all buckets between the first
bucket that matches documents and the last one are returned). This histogram also supports the `extended_bounds`
setting, which enables extending the bounds of the histogram beyond the data itself (to read more on why you'd want to
do that please refer to the explanation <<search-aggregations-bucket-histogram-aggregation-extended-bounds,here>>).

View File

@ -50,6 +50,10 @@ And the following may be the response:
"key": 50,
"doc_count": 4
},
{
"key": 100,
"doc_count": 0
},
{
"key": 150,
"doc_count": 3
@ -60,10 +64,11 @@ And the following may be the response:
}
--------------------------------------------------
The response above shows that none of the aggregated products has a price that falls within the range of `[100 - 150)`.
By default, the response will only contain those buckets with a `doc_count` greater than 0. It is possible change that
and request buckets with either a higher minimum count or even 0 (in which case elasticsearch will "fill in the gaps"
and create buckets with zero documents). This can be configured using the `min_doc_count` setting:
==== Minimum document count
The response above show that no documents has a price that falls within the range of `[100 - 150)`. By default the
response will fill gaps in the histogram with empty buckets. It is possible change that and request buckets with
a higher minimum count thanks to the `min_doc_count` setting:
[source,js]
--------------------------------------------------
@ -73,7 +78,7 @@ and create buckets with zero documents). This can be configured using the `min_d
"histogram" : {
"field" : "price",
"interval" : 50,
"min_doc_count" : 0
"min_doc_count" : 1
}
}
}
@ -96,10 +101,6 @@ Response:
"key": 50,
"doc_count": 4
},
{
"key" : 100,
"doc_count" : 0 <1>
},
{
"key": 150,
"doc_count": 3
@ -110,13 +111,11 @@ Response:
}
--------------------------------------------------
<1> No documents were found that belong in this bucket, yet it is still returned with zero `doc_count`.
[[search-aggregations-bucket-histogram-aggregation-extended-bounds]]
By default the date_/histogram returns all the buckets within the range of the data itself, that is, the documents with
the smallest values (on which with histogram) will determine the min bucket (the bucket with the smallest key) and the
documents with the highest values will determine the max bucket (the bucket with the highest key). Often, when when
requesting empty buckets (`"min_doc_count" : 0`), this causes a confusion, specifically, when the data is also filtered.
requesting empty buckets, this causes a confusion, specifically, when the data is also filtered.
To understand why, let's look at an example:
@ -149,7 +148,6 @@ Example:
"histogram" : {
"field" : "price",
"interval" : 50,
"min_doc_count" : 0,
"extended_bounds" : {
"min" : 0,
"max" : 500
@ -265,67 +263,6 @@ PATH := <AGG_NAME>[<AGG_SEPARATOR><AGG_NAME>]*[<METRIC_SEPARATOR
The above will sort the buckets based on the avg rating among the promoted products
==== Minimum document count
It is possible to only return buckets that have a document count that is greater than or equal to a configured
limit through the `min_doc_count` option.
[source,js]
--------------------------------------------------
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"min_doc_count": 10
}
}
}
}
--------------------------------------------------
The above aggregation would only return buckets that contain 10 documents or more. Default value is `1`.
NOTE: The special value `0` can be used to add empty buckets to the response between the minimum and the maximum buckets.
Here is an example of what the response could look like:
[source,js]
--------------------------------------------------
{
"aggregations": {
"prices": {
"buckets": {
"0": {
"key": 0,
"doc_count": 2
},
"50": {
"key": 50,
"doc_count": 0
},
"150": {
"key": 150,
"doc_count": 3
},
"200": {
"key": 150,
"doc_count": 0
},
"250": {
"key": 150,
"doc_count": 0
},
"300": {
"key": 150,
"doc_count": 1
}
}
}
}
}
--------------------------------------------------
==== Offset
By default the bucket keys start with 0 and then continue in even spaced steps of `interval`, e.g. if the interval is 10 the first buckets

View File

@ -2,7 +2,8 @@
=== Derivative Aggregation
A parent reducer aggregation which calculates the derivative of a specified metric in a parent histogram (or date_histogram)
aggregation. The specified metric must be numeric and the enclosing histogram must have `min_doc_count` set to `0`.
aggregation. The specified metric must be numeric and the enclosing histogram must have `min_doc_count` set to `0` (default
for `histogram` aggregations).
The following snippet calculates the derivative of the total monthly `sales`:
@ -13,8 +14,7 @@ The following snippet calculates the derivative of the total monthly `sales`:
"sales_per_month" : {
"date_histogram" : {
"field" : "date",
"interval" : "month",
"min_doc_count" : 0
"interval" : "month"
},
"aggs": {
"sales": {

View File

@ -54,24 +54,22 @@ embedded like any other metric aggregation:
"my_date_histo":{ <1>
"date_histogram":{
"field":"timestamp",
"interval":"day",
"min_doc_count": 0 <2>
"interval":"day"
},
"aggs":{
"the_sum":{
"sum":{ "field": "lemmings" } <3>
"sum":{ "field": "lemmings" } <2>
},
"the_movavg":{
"moving_avg":{ "buckets_path": "the_sum" } <4>
"moving_avg":{ "buckets_path": "the_sum" } <3>
}
}
}
}
--------------------------------------------------
<1> A `date_histogram` named "my_date_histo" is constructed on the "timestamp" field, with one-day intervals
<2> We must specify "min_doc_count: 0" in our date histogram that all buckets are returned, even if they are empty.
<3> A `sum` metric is used to calculate the sum of a field. This could be any metric (sum, min, max, etc)
<4> Finally, we specify a `moving_avg` aggregation which uses "the_sum" metric as its input.
<2> A `sum` metric is used to calculate the sum of a field. This could be any metric (sum, min, max, etc)
<3> Finally, we specify a `moving_avg` aggregation which uses "the_sum" metric as its input.
Moving averages are built by first specifying a `histogram` or `date_histogram` over a field. You can then optionally
add normal metrics, such as a `sum`, inside of that histogram. Finally, the `moving_avg` is embedded inside the histogram.
@ -85,8 +83,7 @@ A moving average can also be calculated on the document count of each bucket, in
"my_date_histo":{
"date_histogram":{
"field":"timestamp",
"interval":"day",
"min_doc_count": 0
"interval":"day"
},
"aggs":{
"the_movavg":{
@ -294,4 +291,4 @@ global trend is slightly positive, so the prediction makes a sharp u-turn and be
[[double_prediction_global]]
.Double Exponential moving average with window of size 100, predict = 20, alpha = 0.5, beta = 0.1
image::images/reducers_movavg/double_prediction_global.png[]
image::images/reducers_movavg/double_prediction_global.png[]

View File

@ -86,7 +86,7 @@ public class DateHistogramParser implements Aggregator.Parser {
.build();
boolean keyed = false;
long minDocCount = 1;
long minDocCount = 0;
ExtendedBounds extendedBounds = null;
InternalOrder order = (InternalOrder) Histogram.Order.KEY_ASC;
String interval = null;

View File

@ -52,7 +52,7 @@ public class HistogramParser implements Aggregator.Parser {
.build();
boolean keyed = false;
long minDocCount = 1;
long minDocCount = 0;
InternalOrder order = (InternalOrder) InternalOrder.KEY_ASC;
long interval = -1;
ExtendedBounds extendedBounds = null;

View File

@ -170,7 +170,7 @@ public class DateHistogramTests extends ElasticsearchIntegrationTest {
@Test
public void singleValuedField_WithTimeZone() throws Exception {
SearchResponse response = client().prepareSearch("idx")
.addAggregation(dateHistogram("histo").field("date").interval(DateHistogramInterval.DAY).timeZone("+01:00")).execute()
.addAggregation(dateHistogram("histo").field("date").interval(DateHistogramInterval.DAY).minDocCount(1).timeZone("+01:00")).execute()
.actionGet();
DateTimeZone tz = DateTimeZone.forID("+01:00");
assertSearchResponse(response);

View File

@ -167,7 +167,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx")
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.subAggregation(derivative("deriv").setBucketsPaths("_count"))
.subAggregation(derivative("2nd_deriv").setBucketsPaths("deriv"))).execute().actionGet();
@ -204,7 +204,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx")
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.subAggregation(sum("sum").field(SINGLE_VALUED_FIELD_NAME))
.subAggregation(derivative("deriv").setBucketsPaths("sum"))).execute().actionGet();
@ -250,7 +250,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx")
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.subAggregation(stats("stats").field(SINGLE_VALUED_FIELD_NAME))
.subAggregation(derivative("deriv").setBucketsPaths("stats.sum"))).execute().actionGet();
@ -296,7 +296,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx_unmapped")
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.subAggregation(derivative("deriv").setBucketsPaths("_count"))).execute().actionGet();
assertSearchResponse(response);
@ -312,7 +312,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx", "idx_unmapped")
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.subAggregation(derivative("deriv").setBucketsPaths("_count"))).execute().actionGet();
assertSearchResponse(response);
@ -342,7 +342,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
.prepareSearch("empty_bucket_idx")
.setQuery(matchAllQuery())
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1)
.subAggregation(derivative("deriv").setBucketsPaths("_count"))).execute().actionGet();
assertThat(searchResponse.getHits().getTotalHits(), equalTo(numDocsEmptyIdx));
@ -371,7 +371,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
.prepareSearch("empty_bucket_idx_rnd")
.setQuery(matchAllQuery())
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1)
.extendedBounds(0l, (long) numBuckets_empty_rnd - 1)
.subAggregation(derivative("deriv").setBucketsPaths("_count").gapPolicy(randomFrom(GapPolicy.values()))))
.execute().actionGet();
@ -402,7 +402,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
.prepareSearch("empty_bucket_idx")
.setQuery(matchAllQuery())
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1)
.subAggregation(derivative("deriv").setBucketsPaths("_count").gapPolicy(GapPolicy.INSERT_ZEROS))).execute()
.actionGet();
@ -432,7 +432,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
.prepareSearch("empty_bucket_idx")
.setQuery(matchAllQuery())
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1)
.subAggregation(sum("sum").field(SINGLE_VALUED_FIELD_NAME))
.subAggregation(derivative("deriv").setBucketsPaths("sum"))).execute().actionGet();
@ -474,7 +474,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
.prepareSearch("empty_bucket_idx")
.setQuery(matchAllQuery())
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1)
.subAggregation(sum("sum").field(SINGLE_VALUED_FIELD_NAME))
.subAggregation(derivative("deriv").setBucketsPaths("sum").gapPolicy(GapPolicy.INSERT_ZEROS))).execute()
.actionGet();
@ -514,7 +514,7 @@ public class DerivativeTests extends ElasticsearchIntegrationTest {
.prepareSearch("empty_bucket_idx_rnd")
.setQuery(matchAllQuery())
.addAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(1)
.extendedBounds(0l, (long) numBuckets_empty_rnd - 1)
.subAggregation(sum("sum").field(SINGLE_VALUED_FIELD_NAME))
.subAggregation(derivative("deriv").setBucketsPaths("sum").gapPolicy(gapPolicy))).execute().actionGet();

View File

@ -94,7 +94,7 @@ public class MaxBucketTests extends ElasticsearchIntegrationTest {
@Test
public void testDocCount_topLevel() throws Exception {
SearchResponse response = client().prepareSearch("idx")
.addAggregation(histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
.addAggregation(histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue))
.addAggregation(maxBucket("max_bucket").setBucketsPaths("histo>_count")).execute().actionGet();
@ -138,7 +138,7 @@ public class MaxBucketTests extends ElasticsearchIntegrationTest {
.field("tag")
.order(Order.term(true))
.subAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue))
.subAggregation(maxBucket("max_bucket").setBucketsPaths("histo>_count"))).execute().actionGet();
@ -232,7 +232,7 @@ public class MaxBucketTests extends ElasticsearchIntegrationTest {
.field("tag")
.order(Order.term(true))
.subAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue)
.subAggregation(sum("sum").field(SINGLE_VALUED_FIELD_NAME)))
.subAggregation(maxBucket("max_bucket").setBucketsPaths("histo>sum"))).execute().actionGet();
@ -291,7 +291,7 @@ public class MaxBucketTests extends ElasticsearchIntegrationTest {
.field("tag")
.order(Order.term(true))
.subAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue)
.subAggregation(sum("sum").field(SINGLE_VALUED_FIELD_NAME)))
.subAggregation(maxBucket("max_bucket").setBucketsPaths("histo>sum").gapPolicy(GapPolicy.INSERT_ZEROS)))
@ -370,7 +370,7 @@ public class MaxBucketTests extends ElasticsearchIntegrationTest {
.field("tag")
.order(Order.term(true))
.subAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue))
.subAggregation(maxBucket("max_histo_bucket").setBucketsPaths("histo>_count")))
.addAggregation(maxBucket("max_terms_bucket").setBucketsPaths("terms>max_histo_bucket")).execute().actionGet();

View File

@ -94,7 +94,7 @@ public class MinBucketTests extends ElasticsearchIntegrationTest {
@Test
public void testDocCount_topLevel() throws Exception {
SearchResponse response = client().prepareSearch("idx")
.addAggregation(histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
.addAggregation(histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue))
.addAggregation(minBucket("min_bucket").setBucketsPaths("histo>_count")).execute().actionGet();
@ -138,7 +138,7 @@ public class MinBucketTests extends ElasticsearchIntegrationTest {
.field("tag")
.order(Order.term(true))
.subAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue))
.subAggregation(minBucket("min_bucket").setBucketsPaths("histo>_count"))).execute().actionGet();
@ -232,7 +232,7 @@ public class MinBucketTests extends ElasticsearchIntegrationTest {
.field("tag")
.order(Order.term(true))
.subAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue)
.subAggregation(sum("sum").field(SINGLE_VALUED_FIELD_NAME)))
.subAggregation(minBucket("min_bucket").setBucketsPaths("histo>sum"))).execute().actionGet();
@ -291,7 +291,7 @@ public class MinBucketTests extends ElasticsearchIntegrationTest {
.field("tag")
.order(Order.term(true))
.subAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue)
.subAggregation(sum("sum").field(SINGLE_VALUED_FIELD_NAME)))
.subAggregation(minBucket("min_bucket").setBucketsPaths("histo>sum").gapPolicy(GapPolicy.INSERT_ZEROS)))
@ -370,7 +370,7 @@ public class MinBucketTests extends ElasticsearchIntegrationTest {
.field("tag")
.order(Order.term(true))
.subAggregation(
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval).minDocCount(0)
histogram("histo").field(SINGLE_VALUED_FIELD_NAME).interval(interval)
.extendedBounds((long) minRandomValue, (long) maxRandomValue))
.subAggregation(minBucket("min_histo_bucket").setBucketsPaths("histo>_count")))
.addAggregation(minBucket("min_terms_bucket").setBucketsPaths("terms>min_histo_bucket")).execute().actionGet();

View File

@ -314,7 +314,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(interval).minDocCount(0)
histogram("histo").field(INTERVAL_FIELD).interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(metric)
.subAggregation(movingAvg("movavg_counts")
@ -367,7 +367,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(interval).minDocCount(0)
histogram("histo").field(INTERVAL_FIELD).interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(metric)
.subAggregation(movingAvg("movavg_counts")
@ -420,7 +420,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(interval).minDocCount(0)
histogram("histo").field(INTERVAL_FIELD).interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(metric)
.subAggregation(movingAvg("movavg_counts")
@ -473,7 +473,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(interval).minDocCount(0)
histogram("histo").field(INTERVAL_FIELD).interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(metric)
.subAggregation(movingAvg("movavg_counts")
@ -525,7 +525,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(interval).minDocCount(0)
histogram("histo").field(INTERVAL_FIELD).interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(randomMetric("the_metric", VALUE_FIELD))
.subAggregation(movingAvg("movavg_counts")
@ -568,7 +568,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(interval).minDocCount(0)
histogram("histo").field(INTERVAL_FIELD).interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(randomMetric("the_metric", VALUE_FIELD))
.subAggregation(movingAvg("movavg_counts")
@ -592,7 +592,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field("test").interval(interval).minDocCount(0)
histogram("histo").field("test").interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(randomMetric("the_metric", VALUE_FIELD))
.subAggregation(movingAvg("movavg_counts")
@ -617,7 +617,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field("test").interval(interval).minDocCount(0)
histogram("histo").field("test").interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(randomMetric("the_metric", VALUE_FIELD))
.subAggregation(movingAvg("movavg_counts")
@ -643,7 +643,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(interval).minDocCount(0)
histogram("histo").field(INTERVAL_FIELD).interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(randomMetric("the_metric", VALUE_FIELD))
.subAggregation(movingAvg("movavg_counts")
@ -666,7 +666,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
client()
.prepareSearch("idx").setTypes("type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(interval).minDocCount(0)
histogram("histo").field(INTERVAL_FIELD).interval(interval)
.extendedBounds(0L, (long) (interval * (numBuckets - 1)))
.subAggregation(randomMetric("the_metric", VALUE_FIELD))
.subAggregation(movingAvg("movavg_counts")
@ -695,7 +695,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx").setTypes("gap_type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(1).minDocCount(0).extendedBounds(0L, 49L)
histogram("histo").field(INTERVAL_FIELD).interval(1).extendedBounds(0L, 49L)
.subAggregation(min("the_metric").field(GAP_FIELD))
.subAggregation(movingAvg("movavg_values")
.window(windowSize)
@ -754,7 +754,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
SearchResponse response = client()
.prepareSearch("idx").setTypes("gap_type")
.addAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(1).minDocCount(0).extendedBounds(0L, 49L)
histogram("histo").field(INTERVAL_FIELD).interval(1).extendedBounds(0L, 49L)
.subAggregation(min("the_metric").field(GAP_FIELD))
.subAggregation(movingAvg("movavg_values")
.window(windowSize)
@ -822,7 +822,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
.prepareSearch("idx").setTypes("gap_type")
.addAggregation(
filter("filtered").filter(new RangeFilterBuilder(INTERVAL_FIELD).from(1)).subAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(1).minDocCount(0).extendedBounds(0L, 49L)
histogram("histo").field(INTERVAL_FIELD).interval(1).extendedBounds(0L, 49L)
.subAggregation(randomMetric("the_metric", GAP_FIELD))
.subAggregation(movingAvg("movavg_values")
.window(windowSize)
@ -865,7 +865,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
.prepareSearch("idx").setTypes("gap_type")
.addAggregation(
filter("filtered").filter(new RangeFilterBuilder(INTERVAL_FIELD).from(1)).subAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(1).minDocCount(0).extendedBounds(0L, 49L)
histogram("histo").field(INTERVAL_FIELD).interval(1).extendedBounds(0L, 49L)
.subAggregation(randomMetric("the_metric", GAP_FIELD))
.subAggregation(movingAvg("movavg_values")
.window(windowSize)
@ -921,7 +921,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
.prepareSearch("idx").setTypes("gap_type")
.addAggregation(
filter("filtered").filter(new RangeFilterBuilder(INTERVAL_FIELD).to(1)).subAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(1).minDocCount(0).extendedBounds(0L, 49L)
histogram("histo").field(INTERVAL_FIELD).interval(1).extendedBounds(0L, 49L)
.subAggregation(randomMetric("the_metric", GAP_FIELD))
.subAggregation(movingAvg("movavg_values")
.window(windowSize)
@ -968,7 +968,7 @@ public class MovAvgTests extends ElasticsearchIntegrationTest {
.prepareSearch("idx").setTypes("gap_type")
.addAggregation(
filter("filtered").filter(new RangeFilterBuilder(INTERVAL_FIELD).to(1)).subAggregation(
histogram("histo").field(INTERVAL_FIELD).interval(1).minDocCount(0).extendedBounds(0L, 49L)
histogram("histo").field(INTERVAL_FIELD).interval(1).extendedBounds(0L, 49L)
.subAggregation(randomMetric("the_metric", GAP_FIELD))
.subAggregation(movingAvg("movavg_values")
.window(windowSize)