[DOCS] Adds description of analysis_stats object and its properties to GET DFA stats API docs (#53881)
Co-authored-by: Valeriy Khakhutskyy <1292899+valeriy42@users.noreply.github.com> Co-authored-by: Lisa Cawley <lcawley@elastic.co>
This commit is contained in:
parent
25a0addb17
commit
eeb23e9e73
|
@ -34,7 +34,6 @@ If the {es} {security-features} are enabled, you must have the following privile
|
|||
|
||||
For more information, see <<security-privileges>> and <<built-in-roles>>.
|
||||
|
||||
|
||||
[[ml-get-dfanalytics-stats-path-params]]
|
||||
==== {api-path-parms-title}
|
||||
|
||||
|
@ -58,7 +57,7 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=from]
|
|||
(Optional, integer)
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=size]
|
||||
|
||||
|
||||
[role="child_attributes"]
|
||||
[[ml-get-dfanalytics-stats-response-body]]
|
||||
==== {api-response-body-title}
|
||||
|
||||
|
|
|
@ -508,6 +508,335 @@ tag::data-frame-analytics-stats[]
|
|||
An array of statistics objects for {dfanalytics-jobs}, which are
|
||||
sorted by the `id` value in ascending order.
|
||||
|
||||
//Begin analysis_stats
|
||||
`analysis_stats`::
|
||||
(object)
|
||||
An object containing statistical data about the analysis.
|
||||
+
|
||||
.Properties of `analysis_stats`
|
||||
[%collapsible%open]
|
||||
====
|
||||
//Begin classification_stats
|
||||
`classification_stats`:::
|
||||
(object)
|
||||
An object containing statistical data about the {classanalysis}.
|
||||
+
|
||||
.Properties of `classification_stats`
|
||||
[%collapsible%open]
|
||||
=====
|
||||
//Begin class_hyperparameters
|
||||
`hyperparameters`::::
|
||||
(object)
|
||||
An object containing the parameters of the {classanalysis}.
|
||||
+
|
||||
.Properties of `hyperparameters`
|
||||
[%collapsible%open]
|
||||
======
|
||||
tag::dfas-alpha[]
|
||||
`alpha`::::
|
||||
(double)
|
||||
Regularization factor to penalize deeper trees when training decision trees.
|
||||
end::dfas-alpha[]
|
||||
|
||||
`class_assignment_objective`::::
|
||||
(string)
|
||||
Defines whether class assignment maximizes the accuracy or the minimum recall
|
||||
metric. Possible values are `maximize_accuracy` and `maximize_minimum_recall`.
|
||||
|
||||
tag::dfas-downsample-factor[]
|
||||
`downsample_factor`::::
|
||||
(double)
|
||||
The value of the downsample factor.
|
||||
end::dfas-downsample-factor[]
|
||||
|
||||
tag::dfas-eta[]
|
||||
`eta`::::
|
||||
(double)
|
||||
The value of the eta hyperparameter.
|
||||
end::dfas-eta[]
|
||||
|
||||
tag::dfas-eta-growth[]
|
||||
`eta_growth_rate_per_tree`::::
|
||||
(double)
|
||||
Specifies the rate at which the `eta` increases for each new tree that is added to the
|
||||
forest. For example, a rate of `1.05` increases `eta` by 5%.
|
||||
end::dfas-eta-growth[]
|
||||
|
||||
tag::dfas-feature-bag-fraction[]
|
||||
`feature_bag_fraction`::::
|
||||
(double)
|
||||
The fraction of features that is used when selecting a random bag for each
|
||||
candidate split.
|
||||
end::dfas-feature-bag-fraction[]
|
||||
|
||||
tag::dfas-gamma[]
|
||||
`gamma`::::
|
||||
(double)
|
||||
Regularization factor to penalize trees with large numbers of nodes.
|
||||
end::dfas-gamma[]
|
||||
|
||||
tag::dfas-lambda[]
|
||||
`lambda`::::
|
||||
(double)
|
||||
Regularization factor to penalize large leaf weights.
|
||||
end::dfas-lambda[]
|
||||
|
||||
tag::dfas-max-attempts[]
|
||||
`max_attempts_to_add_tree`::::
|
||||
(integer)
|
||||
If the algorithm fails to determine a non-trivial tree (more than a single
|
||||
leaf), this parameter determines how many of such consecutive failures are
|
||||
tolerated. Once the number of attempts exceeds the threshold, the forest
|
||||
training stops.
|
||||
end::dfas-max-attempts[]
|
||||
|
||||
tag::dfas-max-optimization-rounds[]
|
||||
`max_optimization_rounds_per_hyperparameter`::::
|
||||
(integer)
|
||||
A multiplier responsible for determining the maximum number of
|
||||
hyperparameter optimization steps in the Bayesian optimization procedure.
|
||||
The maximum number of steps is determined based on the number of undefined hyperparameters
|
||||
times the maximum optimization rounds per hyperparameter.
|
||||
end::dfas-max-optimization-rounds[]
|
||||
|
||||
tag::dfas-max-trees[]
|
||||
`max_trees`::::
|
||||
(integer)
|
||||
The maximum number of trees in the forest.
|
||||
end::dfas-max-trees[]
|
||||
|
||||
tag::dfas-num-folds[]
|
||||
`num_folds`::::
|
||||
(integer)
|
||||
The maximum number of folds for the cross-validation procedure.
|
||||
end::dfas-num-folds[]
|
||||
|
||||
tag::dfas-num-splits[]
|
||||
`num_splits_per_feature`::::
|
||||
(integer)
|
||||
Determines the maximum number of splits for every feature that can occur in a
|
||||
decision tree when the tree is trained.
|
||||
end::dfas-num-splits[]
|
||||
|
||||
tag::dfas-soft-limit[]
|
||||
`soft_tree_depth_limit`::::
|
||||
(double)
|
||||
Tree depth limit is used for calculating the tree depth penalty. This is a soft
|
||||
limit, it can be exceeded.
|
||||
end::dfas-soft-limit[]
|
||||
|
||||
tag::dfas-soft-tolerance[]
|
||||
`soft_tree_depth_tolerance`::::
|
||||
(double)
|
||||
Tree depth tolerance is used for calculating the tree depth penalty. This is a
|
||||
soft limit, it can be exceeded.
|
||||
end::dfas-soft-tolerance[]
|
||||
======
|
||||
//End class_hyperparameters
|
||||
|
||||
tag::dfas-iteration[]
|
||||
`iteration`::::
|
||||
(integer)
|
||||
The number of iterations on the analysis.
|
||||
end::dfas-iteration[]
|
||||
|
||||
tag::dfas-timestamp[]
|
||||
`timestamp`::::
|
||||
(date)
|
||||
The timestamp when the statistics were reported in milliseconds since the epoch.
|
||||
end::dfas-timestamp[]
|
||||
|
||||
//Begin class_timing_stats
|
||||
tag::dfas-timing-stats[]
|
||||
`timing_stats`::::
|
||||
(object)
|
||||
An object containing time statistics about the {dfanalytics-job}.
|
||||
end::dfas-timing-stats[]
|
||||
+
|
||||
.Properties of `timing_stats`
|
||||
[%collapsible%open]
|
||||
======
|
||||
tag::dfas-timing-stats-elapsed[]
|
||||
`elapsed_time`::::
|
||||
(integer)
|
||||
Runtime of the analysis in milliseconds.
|
||||
end::dfas-timing-stats-elapsed[]
|
||||
|
||||
tag::dfas-timing-stats-iteration[]
|
||||
`iteration_time`::::
|
||||
(integer)
|
||||
Runtime of the latest iteration of the analysis in milliseconds.
|
||||
end::dfas-timing-stats-iteration[]
|
||||
======
|
||||
//End class_timing_stats
|
||||
|
||||
//Begin class_validation_loss
|
||||
tag::dfas-validation-loss[]
|
||||
`validation_loss`::::
|
||||
(object)
|
||||
An object containing information about validation loss.
|
||||
end::dfas-validation-loss[]
|
||||
+
|
||||
.Properties of `validation_loss`
|
||||
[%collapsible%open]
|
||||
======
|
||||
tag::dfas-validation-loss-type[]
|
||||
`loss_type`::::
|
||||
(string)
|
||||
The type of the loss metric. For example, `binomial_logistic`.
|
||||
end::dfas-validation-loss-type[]
|
||||
|
||||
tag::dfas-validation-loss-fold[]
|
||||
`fold_values`::::
|
||||
(array of strings)
|
||||
Validation loss values for every added decision tree during the forest growing
|
||||
procedure.
|
||||
end::dfas-validation-loss-fold[]
|
||||
======
|
||||
//End class_validation_loss
|
||||
=====
|
||||
//End classification_stats
|
||||
|
||||
//Begin outlier_detection_stats
|
||||
`outlier_detection_stats`:::
|
||||
(object)
|
||||
An object containing statistical data about the {oldetection} job.
|
||||
+
|
||||
.Properties of `outlier_detection_stats`
|
||||
[%collapsible%open]
|
||||
=====
|
||||
//Begin parameters
|
||||
`parameters`::::
|
||||
(object)
|
||||
The list of job parameters specified by the user or determined by algorithmic
|
||||
heuristics.
|
||||
+
|
||||
.Properties of `parameters`
|
||||
[%collapsible%open]
|
||||
======
|
||||
`compute_feature_influence`::::
|
||||
(boolean)
|
||||
If true, feature influence calculation is enabled.
|
||||
|
||||
`feature_influence_threshold`::::
|
||||
(double)
|
||||
The minimum {olscore} that a document needs to have to calculate its feature
|
||||
influence score.
|
||||
|
||||
`method`::::
|
||||
(string)
|
||||
The method that {oldetection} uses. Possible values are `lof`, `ldof`,
|
||||
`distance_kth_nn`, `distance_knn`, and `ensemble`.
|
||||
|
||||
`n_neighbors`::::
|
||||
(integer)
|
||||
The value for how many nearest neighbors each method of {oldetection} uses to
|
||||
calculate its outlier score.
|
||||
|
||||
`outlier_fraction`::::
|
||||
(double)
|
||||
The proportion of the data set that is assumed to be outlying prior to
|
||||
{oldetection}.
|
||||
|
||||
`standardization_enabled`::::
|
||||
(boolean)
|
||||
If true, then the following operation is performed on the columns before
|
||||
computing {olscores}: (x_i - mean(x_i)) / sd(x_i).
|
||||
======
|
||||
//End parameters
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timestamp]
|
||||
|
||||
//Begin od_timing_stats
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats]
|
||||
+
|
||||
.Property of `timing_stats`
|
||||
[%collapsible%open]
|
||||
======
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed]
|
||||
======
|
||||
//End od_timing_stats
|
||||
=====
|
||||
//End outlier_detection_stats
|
||||
|
||||
//Begin regression_stats
|
||||
`regression_stats`:::
|
||||
(object)
|
||||
An object containing statistical data about the {reganalysis}.
|
||||
+
|
||||
.Properties of `regression_stats`
|
||||
[%collapsible%open]
|
||||
=====
|
||||
//Begin reg_hyperparameters
|
||||
`hyperparameters`::::
|
||||
(object)
|
||||
An object containing the parameters of the {reganalysis}.
|
||||
+
|
||||
.Properties of `hyperparameters`
|
||||
[%collapsible%open]
|
||||
======
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-alpha]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-downsample-factor]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-eta]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-eta-growth]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-feature-bag-fraction]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-gamma]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-lambda]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-attempts]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-optimization-rounds]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-trees]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-num-folds]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-num-splits]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-soft-limit]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-soft-tolerance]
|
||||
======
|
||||
//End reg_hyperparameters
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-iteration]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timestamp]
|
||||
|
||||
//Begin reg_timing_stats
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats]
|
||||
+
|
||||
.Propertis of `timing_stats`
|
||||
[%collapsible%open]
|
||||
======
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-iteration]
|
||||
======
|
||||
//End reg_timing_stats
|
||||
|
||||
//Begin reg_validation_loss
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss]
|
||||
+
|
||||
.Properties of `validation_loss`
|
||||
[%collapsible%open]
|
||||
======
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-type]
|
||||
|
||||
include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-fold]
|
||||
======
|
||||
//End reg_validation_loss
|
||||
=====
|
||||
//End regression_stats
|
||||
====
|
||||
//End analysis_stats
|
||||
|
||||
`assignment_explanation`:::
|
||||
(string)
|
||||
For running jobs only, contains messages relating to the selection of a node to
|
||||
|
|
Loading…
Reference in New Issue