[ML] Exclude failed jobs from node allocation decision (elastic/x-pack-elasticsearch#4395)
When calculating the current load on each ML node during the node allocation process we should be ignoring failed jobs. This is because failed jobs do not have a corresponding native process, so do not consume memory or CPU resources. relates elastic/x-pack-elasticsearch#4381 Original commit: elastic/x-pack-elasticsearch@1cb0ca973e
This commit is contained in:
parent
70f9bcc0d1
commit
fd3f079276
|
@ -199,18 +199,25 @@ public class TransportOpenJobAction extends TransportMasterNodeAction<OpenJobAct
|
|||
Collection<PersistentTasksCustomMetaData.PersistentTask<?>> assignedTasks =
|
||||
persistentTasks.findTasks(OpenJobAction.TASK_NAME,
|
||||
task -> node.getId().equals(task.getExecutorNode()));
|
||||
numberOfAssignedJobs = assignedTasks.size();
|
||||
for (PersistentTasksCustomMetaData.PersistentTask<?> assignedTask : assignedTasks) {
|
||||
JobTaskStatus jobTaskState = (JobTaskStatus) assignedTask.getStatus();
|
||||
JobState jobState;
|
||||
if (jobTaskState == null || // executor node didn't have the chance to set job status to OPENING
|
||||
// previous executor node failed and current executor node didn't have the chance to set job status to OPENING
|
||||
jobTaskState.isStatusStale(assignedTask)) {
|
||||
++numberOfAllocatingJobs;
|
||||
jobState = JobState.OPENING;
|
||||
} else {
|
||||
jobState = jobTaskState.getState();
|
||||
}
|
||||
// Don't count FAILED jobs, as they don't consume native memory
|
||||
if (jobState != JobState.FAILED) {
|
||||
++numberOfAssignedJobs;
|
||||
String assignedJobId = ((OpenJobAction.JobParams) assignedTask.getParams()).getJobId();
|
||||
Job assignedJob = mlMetadata.getJobs().get(assignedJobId);
|
||||
assert assignedJob != null;
|
||||
assignedJobMemory += assignedJob.estimateMemoryFootprint();
|
||||
}
|
||||
String assignedJobId = ((OpenJobAction.JobParams) assignedTask.getParams()).getJobId();
|
||||
Job assignedJob = mlMetadata.getJobs().get(assignedJobId);
|
||||
assert assignedJob != null;
|
||||
assignedJobMemory += assignedJob.estimateMemoryFootprint();
|
||||
}
|
||||
}
|
||||
if (numberOfAllocatingJobs >= maxConcurrentJobAllocations) {
|
||||
|
|
|
@ -168,6 +168,44 @@ public class TransportOpenJobActionTests extends ESTestCase {
|
|||
assertEquals("_node_id2", result.getExecutorNode());
|
||||
}
|
||||
|
||||
public void testSelectLeastLoadedMlNode_byMemoryWithFailedJobs() {
|
||||
Map<String, String> nodeAttr = new HashMap<>();
|
||||
nodeAttr.put(MachineLearning.ML_ENABLED_NODE_ATTR, "true");
|
||||
// this leaves just under 300MB per node available for ML jobs
|
||||
nodeAttr.put(MachineLearning.MACHINE_MEMORY_NODE_ATTR, "1000000000");
|
||||
DiscoveryNodes nodes = DiscoveryNodes.builder()
|
||||
.add(new DiscoveryNode("_node_name1", "_node_id1", new TransportAddress(InetAddress.getLoopbackAddress(), 9300),
|
||||
nodeAttr, Collections.emptySet(), Version.CURRENT))
|
||||
.add(new DiscoveryNode("_node_name2", "_node_id2", new TransportAddress(InetAddress.getLoopbackAddress(), 9301),
|
||||
nodeAttr, Collections.emptySet(), Version.CURRENT))
|
||||
.add(new DiscoveryNode("_node_name3", "_node_id3", new TransportAddress(InetAddress.getLoopbackAddress(), 9302),
|
||||
nodeAttr, Collections.emptySet(), Version.CURRENT))
|
||||
.build();
|
||||
|
||||
PersistentTasksCustomMetaData.Builder tasksBuilder = PersistentTasksCustomMetaData.builder();
|
||||
addJobTask("job_id1", "_node_id1", JobState.fromString("failed"), tasksBuilder);
|
||||
addJobTask("job_id2", "_node_id2", JobState.fromString("failed"), tasksBuilder);
|
||||
addJobTask("job_id3", "_node_id3", JobState.fromString("failed"), tasksBuilder);
|
||||
PersistentTasksCustomMetaData tasks = tasksBuilder.build();
|
||||
|
||||
ClusterState.Builder cs = ClusterState.builder(new ClusterName("_name"));
|
||||
MetaData.Builder metaData = MetaData.builder();
|
||||
RoutingTable.Builder routingTable = RoutingTable.builder();
|
||||
addJobAndIndices(metaData, routingTable, jobId -> {
|
||||
// remember we add 100MB for the process overhead, so this model
|
||||
// memory limit corresponds to a job size of 250MB
|
||||
return BaseMlIntegTestCase.createFareQuoteJob(jobId, new ByteSizeValue(150, ByteSizeUnit.MB)).build(new Date());
|
||||
}, "job_id1", "job_id2", "job_id3", "job_id4");
|
||||
cs.nodes(nodes);
|
||||
metaData.putCustom(PersistentTasksCustomMetaData.TYPE, tasks);
|
||||
cs.metaData(metaData);
|
||||
cs.routingTable(routingTable.build());
|
||||
// if the memory of the failed jobs is wrongly included in the calculation then this job will not be allocated
|
||||
Assignment result = TransportOpenJobAction.selectLeastLoadedMlNode("job_id4", cs.build(), 2, 10, 30, logger);
|
||||
assertEquals("", result.getExplanation());
|
||||
assertNotNull(result.getExecutorNode());
|
||||
}
|
||||
|
||||
public void testSelectLeastLoadedMlNode_maxCapacity() {
|
||||
int numNodes = randomIntBetween(1, 10);
|
||||
int maxRunningJobsPerNode = randomIntBetween(1, 100);
|
||||
|
|
Loading…
Reference in New Issue