Commit Graph

180 Commits

Author SHA1 Message Date
Benjamin Trent afd90647c9
[ML] Adds feature importance to option to inference processor (#52218) (#52666)
This adds machine learning model feature importance calculations to the inference processor.

The new flag in the configuration matches the analytics parameter name: `num_top_feature_importance_values`
Example:
```
"inference": {
   "field_mappings": {},
   "model_id": "my_model",
   "inference_config": {
      "regression": {
         "num_top_feature_importance_values": 3
      }
   }
}
```

This will write to the document as follows:
```
"inference" : {
   "feature_importance" : {
      "FlightTimeMin" : -76.90955548511226,
      "FlightDelayType" : 114.13514762158526,
      "DistanceMiles" : 13.731580450792187
   },
   "predicted_value" : 108.33165831875137,
   "model_id" : "my_model"
}
```

This is done through calculating the [SHAP values](https://arxiv.org/abs/1802.03888).

It requires that models have populated `number_samples` for each tree node. This is not available to models that were created before 7.7.

Additionally, if the inference config is requesting feature_importance, and not all nodes have been upgraded yet, it will not allow the pipeline to be created. This is to safe-guard in a mixed-version environment where only some ingest nodes have been upgraded.

NOTE: the algorithm is a Java port of the one laid out in ml-cpp: https://github.com/elastic/ml-cpp/blob/master/lib/maths/CTreeShapFeatureImportance.cc

usability blocked by: https://github.com/elastic/ml-cpp/pull/991
2020-02-21 18:42:31 -05:00
Jack Conradson c4d91143ac Mute RunDataFrameAnalyticsIT.testOutlierDetectionStopAndRestart
Relates: #52654
2020-02-21 09:32:19 -08:00
Przemysław Witek b84e8db7b5
[7.x] Rename .ml-state index to .ml-state-000001 to support rollover (#52510) (#52595) 2020-02-21 08:55:59 +01:00
Benjamin Trent 2a5c181dda
[ML][Inference] don't return inflated definition when storing trained models (#52573) (#52580)
When `PUT` is called to store a trained model, it is useful to return the newly create model config. But, it is NOT useful to return the inflated definition.

These definitions can be large and returning the inflated definition causes undo work on the server and client side.

Co-authored-by: Elastic Machine <elasticmachine@users.noreply.github.com>
2020-02-20 19:47:29 -05:00
Benjamin Trent 013d5c2d24
[ML] Adds support for a global calendar via `_all` (#50372) (#52578)
This adds `_all` to Calendar searches. This enables users to supply the `_all` string in the `job_ids` array when creating a Calendar. That calendar will now be applied to all jobs (existing and newly created).

Closes #45013

Co-authored-by: Elastic Machine <elasticmachine@users.noreply.github.com>
2020-02-20 17:22:59 -05:00
Przemysław Witek 7cd997df84
[ML] Make ml internal indices hidden (#52423) (#52509) 2020-02-19 14:02:32 +01:00
Dimitris Athanasiou ad56802ac6
[7.x][ML] Refactor ML mappings and templates into JSON resources (#51… (#52353)
ML mappings and index templates have so far been created
programmatically. While this had its merits due to static typing,
there is consensus it would be clear to maintain those in json files.
In addition, we are going to adding ILM policies to these indices
and the component for a plugin to register ILM policies is
`IndexTemplateRegistry`. It expects the templates to be in resource
json files.

For the above reasons this commit refactors ML mappings and index
templates into json resource files that are registered via
`MlIndexTemplateRegistry`.

Backport of #51765
2020-02-14 17:16:06 +02:00
David Roberts 473468d763 [ML] Better error when persistent task assignment disabled (#52014)
Changes the misleading error message when attempting to open
a job while the "cluster.persistent_tasks.allocation.enable"
setting is set to "none" to a clearer message that names the
setting.

Closes #51956
2020-02-11 15:23:21 +00:00
Benjamin Trent 846f87a26e
[ML] allow close/stop for jobs/datafeeds with missing configs (#51888) (#51997)
If the configs are removed (by some horrific means), we should still allow tasks to be cleaned up easily.

Datafeeds and jobs with missing configs are now visible in their respective _stats calls and can be stopped/closed.
2020-02-06 12:10:18 -05:00
Benjamin Trent 1380dd439a
[7.x] [ML][Inference] Fix weighted mode definition (#51648) (#51695)
* [ML][Inference] Fix weighted mode definition (#51648)

Weighted mode inaccurately assumed that the "max value" of the input values would be the maximum class value. This does not make sense. 

Weighted Mode should know how many classes there are. Hence the new parameter `num_classes`. This indicates what the maximum class value to be expected.
2020-01-30 15:33:25 -05:00
Przemysław Witek 683170b007
Increase the number of indexed documents to increase a chance that there are at least 2 training rows. (#51607) (#51615) 2020-01-29 17:17:19 +01:00
David Kyle ca4b90a001
[ML] Calculate results and snapshot retention using latest bucket timestamps (#51061) (#51301)
The retention period is calculated relative to the last bucket result or snapshot
time rather than wall clock
2020-01-22 14:52:33 +00:00
Dimitris Athanasiou 59687a9384
[7.x][ML] Validate classification dependent_variable cardinality is at lea… (#51232) (#51309)
Data frame analytics classification currently only supports 2 classes for the
dependent variable. We were checking that the field's cardinality is not higher
than 2 but we should also check it is not less than that as otherwise the process
fails.

Backport of #51232
2020-01-22 16:51:16 +02:00
Benjamin Trent 2a73e849d6
[ML][Inference] fixing ingest IT tests (#51267) (#51311)
Converts InferenceIngestIT into a `ESRestTestCase`.

closes #51201
2020-01-22 09:50:17 -05:00
Przemysław Witek bfcfcdee33
[7.x] Do not copy mapping from dependent variable to prediction field in regression analysis (#51227) (#51288) 2020-01-22 12:36:24 +01:00
Tom Veasey 32ec934b15
[7.x][ML] Assert top classes are ordered by score (#51028)
Backport #51003.
2020-01-16 12:23:15 +00:00
Benjamin Trent 72c270946f
[ML][Inference] Adding classification_weights to ensemble models (#50874) (#50994)
* [ML][Inference] Adding classification_weights to ensemble models

classification_weights are a way to allow models to
prefer specific classification results over others
this might be advantageous if classification value
probabilities are a known quantity and can improve
model error rates.
2020-01-14 12:40:25 -05:00
Tom Veasey de5713fa4b
[ML] Disable invalid assertion (#50988)
Backport #50986.
2020-01-14 17:35:00 +00:00
Dimitris Athanasiou 1d8cb3c741
[7.x][ML] Add num_top_feature_importance_values param to regression and classi… (#50914) (#50976)
Adds a new parameter to regression and classification that enables computation
of importance for the top most important features. The computation of the importance
is based on SHAP (SHapley Additive exPlanations) method.

Backport of #50914
2020-01-14 16:46:09 +02:00
Przemysław Witek 9c6ffdc2be
[7.x] Handle nested and aliased fields correctly when copying mapping. (#50918) (#50968) 2020-01-14 14:43:39 +01:00
Benjamin Trent fa116a6d26
[7.x] [ML][Inference] PUT API (#50852) (#50887)
* [ML][Inference] PUT API (#50852)

This adds the `PUT` API for creating trained models that support our format.

This includes

* HLRC change for the API
* API creation
* Validations of model format and call

* fixing backport
2020-01-12 10:59:11 -05:00
Benjamin Trent cc0e64572a
[ML][Inference][HLRC] Add necessary lang ident classes (#50705) (#50794)
This adds the necessary named XContent classes to the HLRC for the lang ident model. This is so the HLRC can call `GET _ml/inference/lang_ident_model_1?include_definition=true` without XContent parsing errors.

The constructors are package private as since this classes are used exclusively within the pre-packaged model (and require the specific weights, etc. to be of any use).
2020-01-09 10:33:38 -05:00
Benjamin Trent 060e0a6277
[ML][Inference] Add support for models shipped as resources (#50680) (#50700)
This adds support for models that are shipped as resources in the ML plugin. The first of which is the `lang_ident` model.
2020-01-07 09:21:59 -05:00
Przemysław Witek 4116452d90
Implement testStopAndRestart for ClassificationIT (#50585) (#50698) 2020-01-07 13:41:37 +01:00
Przemysław Witek 8917c05df8
[7.x] Synchronize processInStream.close() call (#50581) 2020-01-03 10:23:51 +01:00
Przemysław Witek 4ecabe496f
Mute testStopAndRestart test case (#50551) 2020-01-02 15:28:20 +01:00
Christoph Büscher 1599af8428 Fix type conversion problem in Eclipse (#50549)
Eclipse 4.13 shows a type mismatch error in the affected line because it cannot
correctly infer the boolean return type for the method call. Assigning return
value to a local variable resolves this problem.
2020-01-02 14:29:20 +01:00
Przemysław Witek 3e3a93002f
[7.x] Fix accuracy metric (#50310) (#50433) 2019-12-20 15:34:38 +01:00
Przemysław Witek 14d95aae46
[7.x] Make each analysis report desired field mappings to be copied (#50219) (#50428) 2019-12-20 15:10:33 +01:00
Przemysław Witek 5bb668b866
[7.x] Get rid of maxClassesCardinality internal parameter (#50418) (#50423) 2019-12-20 14:24:23 +01:00
Przemysław Witek cc4bc797f9
[7.x] Implement `precision` and `recall` metrics for classification evaluation (#49671) (#50378) 2019-12-19 18:55:05 +01:00
Dimitris Athanasiou 447bac27d2
[7.x][ML] Delete unused data frame analytics state (#50243) (#50280)
This commit adds removal of unused data frame analytics state
from the _delete_expired_data API (and in extend th ML daily
maintenance task). At the moment the potential state docs
include the progress document and state for regression and
classification analyses.

Backport of #50243
2019-12-18 12:30:11 +00:00
Dimitris Athanasiou fe3c9e71d1
[7.x][ML] Fix DFA explain API timeout when source index is missing (#50176) (#50180)
This commit fixes a bug that caused the data frame analytics
_explain API to time out in a multi-node setup when the source
index was missing. When we try to create the extracted fields detector,
we check the index settings. If the index is missing that responds
with a failure that could be wrapped as a remote exception.
While we unwrapped correctly to check if the cause was an
`IndexNotFoundException`, we then proceeded to cast the original
exception instead of the cause.

Backport of #50176
2019-12-13 17:00:55 +02:00
Dimitris Athanasiou e6cbcf7f7c
[7.x] [ML] Persist/restore state for DFA classification (#50040) (#50147)
This commit adds state persist/restore for data frame analytics classification jobs.

Backport of #50040
2019-12-13 10:33:19 +02:00
Benjamin Trent d7ffa7f8f7
[7.x][ML] Add graceful retry for anomaly detector result indexing failures(#49508) (#50145)
* [ML] Add graceful retry for anomaly detector result indexing failures (#49508)

All results indexing now retry the amount of times configured in `xpack.ml.persist_results_max_retries`. The retries are done in a semi-random, exponential backoff.

* fixing test
2019-12-12 12:24:58 -05:00
Benjamin Trent c043aa887f
[ML][Inference] Simplify inference processor options (#50105) (#50146)
* [ML][Inference] Simplify inference processor options

* addressing pr comments
2019-12-12 11:13:55 -05:00
Dimitris Athanasiou 03ecaae221
[7.x][ML] Avoid classification integ test training on single class (#50072) (#50078)
The `ClassificationIT.testTwoJobsWithSameRandomizeSeedUseSameTrainingSet`
test was previously set up to just have 10 rows. With `training_percent`
of 50%, only 5 rows will be used for training. There is a good chance that
all 5 rows will be of one class which results to failure.

This commit increases the rows to 100. Now 50 rows should be used for training
and the chance of failure should be very small.

Backport of #50072
2019-12-11 18:50:26 +02:00
Dimitris Athanasiou 8891f4db88
[7.x][ML] Introduce randomize_seed setting for regression and classification (#49990) (#50023)
This adds a new `randomize_seed` for regression and classification.
When not explicitly set, the seed is randomly generated. One can
reuse the seed in a similar job in order to ensure the same docs
are picked for training.

Backport of #49990
2019-12-10 15:29:19 +02:00
Benjamin Trent 0b6ce9683c
[ML] Use query in cardinality check (#49939) (#49984)
When checking the cardinality of a field, the query should be take into account. The user might know about some bad data in their index and want to filter down to the target_field values they care about.
2019-12-09 10:14:41 -05:00
Przemysław Witek 0965a10468
[7.x] Pass `prediction_field_type` to C++ analytics process (#49861) (#49981) 2019-12-09 14:43:01 +01:00
Benjamin Trent 049d854360
[ML][Inference] adjust so target_field always has inference result and optionally allow new top classes field in the classification config (#49923) (#49982) 2019-12-09 08:29:45 -05:00
Dimitris Athanasiou e4f838e764
[7.x][ML] Update expected mem estimate in explain API integ test (#49924) (#49979)
Work in progress in the c++ side is increasing memory estimates
a bit and this test fails. At the time of this commit the mem
estimate when there is no source query is a about 2Mb. So I
am relaxing the test to assert memory estimate is less than 1Mb
instead of 500Kb.

Backport of #49924
2019-12-09 11:52:06 +02:00
Przemysław Witek e60837aa3b
[7.x] Log whole analytics stats when the state assertion fails (#49906) (#49911) 2019-12-06 14:31:17 +01:00
Dimitris Athanasiou 4edb2e7bb6
[7.x][ML] Add optional source filtering during data frame reindexing (#49690) (#49718)
This adds a `_source` setting under the `source` setting of a data
frame analytics config. The new `_source` is reusing the structure
of a `FetchSourceContext` like `analyzed_fields` does. Specifying
includes and excludes for source allows selecting which fields
will get reindexed and will be available in the destination index.

Closes #49531

Backport of #49690
2019-11-29 16:10:44 +02:00
Dimitris Athanasiou c149c64dc4
[7.x][ML] Apply source query on data frame analytics memory estimation (#49517) (#49532)
Closes #49454

Backport of #49517
2019-11-25 12:51:57 +02:00
Benjamin Trent a7477ad7c3
[7.x] [ML][Inference] compressing model definition and lazy parsing (#49269) (#49446)
* [ML][Inference] compressing model definition and lazy parsing (#49269)

* [ML][Inference] compressing model definition and lazy parsing

* addressing PR comments

* adding commons io

* implementing simplified bounded stream

* adjusting for type inclusion
2019-11-21 15:32:32 -05:00
Benjamin Trent d41b2e3f38
[ML][Inference] allowing per-model licensing (#49398) (#49435)
* [ML][Inference] allowing per-model licensing

* changing to internal action + removing pre-mature opt
2019-11-21 09:46:34 -05:00
Przemysław Witek c7ac2011eb
[7.x] Implement accuracy metric for multiclass classification (#47772) (#49430) 2019-11-21 15:01:18 +01:00
Przemysław Witek 9c0ec7ce23
[7.x] Make AnalyticsProcessManager class more robust (#49282) (#49356) 2019-11-20 10:08:16 +01:00
Przemysław Witek 42bb8ae525
[7.x] Extract indexData method out of RegressionIT tests (#49306) (#49313) 2019-11-19 22:47:12 +01:00