This adds a max_model_memory setting to forecast requests.
This setting can take a string value that is formatted according to byte sizes (i.e. "50mb", "150mb").
The default value is `20mb`.
There is a HARD limit at `500mb` which will throw an error if used.
If the limit is larger than 40% the anomaly job's configured model limit, the forecast limit is reduced to be strictly lower than that value. This reduction is logged and audited.
related native change: https://github.com/elastic/ml-cpp/pull/1238
closes: https://github.com/elastic/elasticsearch/issues/56420
Throttling nightly cleanup as much as we do has been over cautious.
Night cleanup should be more lenient in its throttling. We still
keep the same batch size, but now the requests per second scale
with the number of data nodes. If we have more than 5 data nodes,
we don't throttle at all.
Additionally, the API now has `requests_per_second` and `timeout` set.
So users calling the API directly can set the throttling.
This commit also adds a new setting `xpack.ml.nightly_maintenance_requests_per_second`.
This will allow users to adjust throttling of the nightly maintenance.
Adds a "node" field to the response from the following endpoints:
1. Open anomaly detection job
2. Start datafeed
3. Start data frame analytics job
If the job or datafeed is assigned to a node immediately then
this field will return the ID of that node.
In the case where a job or datafeed is opened or started lazily
the node field will contain an empty string. Clients that want
to test whether a job or datafeed was opened or started lazily
can therefore check for this.
Backport of #55473
* [ML] add new inference_config field to trained model config (#54421)
A new field called `inference_config` is now added to the trained model config object. This new field allows for default inference settings from analytics or some external model builder.
The inference processor can still override whatever is set as the default in the trained model config.
* fixing for backport
Adds a new parameter for classification that enables choosing whether to assign labels to
maximise accuracy or to maximise the minimum class recall.
Fixes#52427.
When `PUT` is called to store a trained model, it is useful to return the newly create model config. But, it is NOT useful to return the inflated definition.
These definitions can be large and returning the inflated definition causes undo work on the server and client side.
Co-authored-by: Elastic Machine <elasticmachine@users.noreply.github.com>
* [ML][Inference] add tags url param to GET (#51330)
Adds a new URL parameter, `tags` to the GET _ml/inference/<model_id> endpoint.
This parameter allows the list of models to be further reduced to those who contain all the provided tags.
Adds a new parameter to regression and classification that enables computation
of importance for the top most important features. The computation of the importance
is based on SHAP (SHapley Additive exPlanations) method.
Backport of #50914
* [ML][Inference] PUT API (#50852)
This adds the `PUT` API for creating trained models that support our format.
This includes
* HLRC change for the API
* API creation
* Validations of model format and call
* fixing backport
Adds a `force` parameter to the delete data frame analytics
request. When `force` is `true`, the action force-stops the
jobs and then proceeds to the deletion. This can be used in
order to delete a non-stopped job with a single request.
Closes#48124
Backport of #50553
This adds a new `randomize_seed` for regression and classification.
When not explicitly set, the seed is randomly generated. One can
reuse the seed in a similar job in order to ensure the same docs
are picked for training.
Backport of #49990
This adds a `_source` setting under the `source` setting of a data
frame analytics config. The new `_source` is reusing the structure
of a `FetchSourceContext` like `analyzed_fields` does. Specifying
includes and excludes for source allows selecting which fields
will get reindexed and will be available in the destination index.
Closes#49531
Backport of #49690
This commit replaces the _estimate_memory_usage API with
a new API, the _explain API.
The API consolidates information that is useful before
creating a data frame analytics job.
It includes:
- memory estimation
- field selection explanation
Memory estimation is moved here from what was previously
calculated in the _estimate_memory_usage API.
Field selection is a new feature that explains to the user
whether each available field was selected to be included or
not in the analysis. In the case it was not included, it also
explains the reason why.
Backport of #49455
Adds the following parameters to `outlier_detection`:
- `compute_feature_influence` (boolean): whether to compute or not
feature influence scores
- `outlier_fraction` (double): the proportion of the data set assumed
to be outlying prior to running outlier detection
- `standardization_enabled` (boolean): whether to apply standardization
to the feature values
Backport of #47600
This introduces a `failed` state to which the data frame analytics
persistent task is set to when something unexpected fails. It could
be the process crashing, the results processor hitting some error,
etc. The failure message is then captured and set on the task state.
From there, it becomes available via the _stats API as `failure_reason`.
The df-analytics stop API now has a `force` boolean parameter. This allows
the user to call it for a failed task in order to reset it to `stopped` after
we have ensured the failure has been communicated to the user.
This commit also adds the analytics version in the persistent task
params as this allows us to prevent tasks to run on unsuitable nodes in
the future.
This merges the initial work that adds a framework for performing
machine learning analytics on data frames. The feature is currently experimental
and requires a platinum license. Note that the original commits can be
found in the `feature-ml-data-frame-analytics` branch.
A new set of APIs is added which allows the creation of data frame analytics
jobs. Configuration allows specifying different types of analysis to be performed
on a data frame. At first there is support for outlier detection.
The APIs are:
- PUT _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}/_stats
- POST _ml/data_frame/analysis/{id}/_start
- POST _ml/data_frame/analysis/{id}/_stop
- DELETE _ml/data_frame/analysis/{id}
When a data frame analytics job is started a persistent task is created and started.
The main steps of the task are:
1. reindex the source index into the dest index
2. analyze the data through the data_frame_analyzer c++ process
3. merge the results of the process back into the destination index
In addition, an evaluation API is added which packages commonly used metrics
that provide evaluation of various analysis:
- POST _ml/data_frame/_evaluate