Though we allow CCS within datafeeds, users could prevent nodes from accessing remote clusters. This can cause mysterious errors and difficult to troubleshoot.
This commit adds a check to verify that `cluster.remote.connect` is enabled on the current node when a datafeed is configured with a remote index pattern.
Previously, the stats API reports a progress percentage
for DF analytics tasks that are running and are in the
`reindexing` or `analyzing` state.
This means that when the task is `stopped` there is no progress
reported. Thus, one cannot distinguish between a task that never
run to one that completed.
In addition, there are blind spots in the progress reporting.
In particular, we do not account for when data is loaded into the
process. We also do not account for when results are written.
This commit addresses the above issues. It changes progress
to being a list of objects, each one describing the phase
and its progress as a percentage. We currently have 4 phases:
reindexing, loading_data, analyzing, writing_results.
When the task stops, progress is persisted as a document in the
state index. The stats API now reports progress from in-memory
if the task is running, or returns the persisted document
(if there is one).
This PR addresses the feedback in https://github.com/elastic/ml-team/issues/175#issuecomment-512215731.
* Adds an example to `analyzed_fields`
* Includes `source` and `dest` objects inline in the resource page
* Lists `model_memory_limit` in the PUT API page
* Amends the `analysis` section in the resource page
* Removes Properties headings in subsections
This PR adds the reference documentation pages of the data frame analytics APIs (PUT, START, STOP, GET, GET stats, DELETE, Evaluate) to the ML APIs pool.
The existing language was misleading about the model snapshots and where they are located. Saying "to disk" sounds like files external to Elasticsearch IMO. It raises the obvious question, where on disk? which node? Is it in the Elasticsearch snapshot repo? The model snapshots are held in an internal index.
The machine learning feature of xpack has native binaries with a
different commit id than the rest of code. It is currently exposed in
the xpack info api. This commit adds that commit information to the ML
info api, so that it may be removed from the info api.