Currently Netty will batch compression an entire HTTP response
regardless of its content size. It allocates a byte array at least of
the same size as the uncompressed content. This causes issues with our
attempts to remove humungous G1GC allocations. This commit resolves the
issue by split responses into 128KB chunks.
This has the side-effect of making large outbound HTTP responses that
are compressed be send as chunked transfer-encoding.
Currently we duplicate our specialized cors logic in all transport
plugins. This is unnecessary as it could be implemented in a single
place. This commit moves the logic to server. Additionally it fixes a
but where we are incorrectly closing http channels on early Cors
responses.
Introduce 64-bit unsigned long field type
This field type supports
- indexing of integer values from [0, 18446744073709551615]
- precise queries (term, range)
- precise sort and terms aggregations
- other aggregations are based on conversion of long values
to double and can be imprecise for large values.
Backport for #60050Closes#32434
This commit adds a mechanism to MapperTestCase that allows implementing
test classes to check that their parameters can be updated, or throw conflict
errors as advertised. Child classes override the registerParameters method
and tell the passed-in UpdateChecker class about their parameters. Simple
conflicts can be checked, using the existing minimal mappings as a base to
compare against, or alternatively a particular initial mapping can be provided
to check edge cases (eg, norms can be updated from true to false, but not
vice versa). Updates are registered with a predicate that checks that the update
has in fact been applied to the resulting FieldMapper.
Fixes#61631
Most of our field types have the same implementation for their `existsQuery` method which relies on doc_values if present, otherwise it queries norms if available or uses a term query against the _field_names meta field. This standard implementation is repeated in many different mappers.
There are field types that only query doc_values, because they always have them, and field types that always query _field_names, because they never have norms nor doc_values. We could apply the same standard logic to all of these field types as `MappedFieldType` has the knowledge about what data structures are available.
This commit introduces a standard implementation that does the right thing depending on the data structure that is available. With that only field types that require a different behaviour need to override the existsQuery method.
At the same time, this no longer forces subclasses to override `existsQuery`, which could be forgotten when needed. To address this we introduced a new test method in `MapperTestCase` that verifies the `existsQuery` being generated and its consistency with the available data structures.
* Make for each processor resistant to field modification (#62791)
This change provides consistent view of field that foreach processor is iterating over. That prevents it to go into infinite loop and put great pressure on the cluster.
Closes#62790
* fix compilation
This reworks the code around grok's built-in patterns to name things
more like the rest of the code. Its not a big deal, but I'm just more
used to having `public static final` constants in SHOUTING_SNAKE_CASE.
The dense vector field is not aggregatable although it produces fielddata through its BinaryDocValuesField. It should pass up hasDocValues set to true to its parent class in its constructor, and return isAggregatable false. Same for the sparse vector field (only in 7.x).
This may not have consequences today, but it will be important once we try to share the same exists query implementation throughout all of the mappers with #57607.
Currently we log the NettyAllocator description when the netty plugin is
created. Unfortunately, this hits certain static fields in Netty which
triggers the settings of the number of CPU processors. This conflicts
with out Elasticsearch behavior to override this based on a setting.
This commit resolves the issue by logging after the processors have been
set.
Currently the netty pool chunk size defaults to 16MB. The number does
not play well with the G1GC which causes this to consume entire regions.
Additionally, we normally allocated arrays of size 64KB or less. This
means that Elasticsearch could handle a smaller pool chunk size to play
nicer with the G1GC.
Backports #61590 to 7.x
So far we don't allow metadata fields in the document _source. However, in the case of the _doc_count field mapper (#58339) we want to be able to set
This PR adds a method to the metadata field parsers that exposes if the field can be included in the document source or not.
This way each metadata field can configure if it can be included in the document _source
FetchSubPhase#getProcessor currently takes a SearchLookup parameter. This
however is only needed by a couple of subphases, and will almost certainly change in
future as we want to simplify how fetch phases retrieve values for individual hits.
To future-proof against further signature changes, this commit moves the SearchLookup
reference into FetchContext instead.
We currently pass a SearchContext around to share configuration among
FetchSubPhases. With the introduction of runtime fields, it would be useful
to start storing some state on this context to be shared between different
subphases (for example, stored fields or search lookups can be loaded lazily
but referred to by many different subphases). However, SearchContext is a
very large and unwieldy class, and adding more methods or state here feels
like a bridge too far.
This commit introduces a new FetchContext class that exposes only those
methods on SearchContext that are required for fetch phases. This reduces
the API surface area for fetch phases considerably, and should give us some
leeway to add further state.
This new snapshot contains the following JIRAs that we're interested in:
- [LUCENE-9525](https://issues.apache.org/jira/browse/LUCENE-9525)
Better handling of small documents. This should improve retrieval times
when documents are less than ~1kB.
- [LUCENE-9510](https://issues.apache.org/jira/browse/LUCENE-9510)
Faster flushes when index sorting is enabled by not compressing the
temporary files that store stored fields and term vectors.
This backport incorporates all the changes to improve compiler extensibility. The reason for this
backport is the changes are now required to support runtime fields.
This implements the `fields` API in `_search` for runtime fields using
doc values. Most of that implementation is stolen from the
`docvalue_fields` fetch sub-phase, just moved into the same API that the
`fields` API uses. At this point the `docvalue_fields` fetch phase looks
like a special case of the `fields` API.
While I was at it I moved the "which doc values sub-implementation
should I use for fetching?" question from a bunch of `instanceof`s to a
method on `LeafFieldData` so we can be much more flexible with what is
returned and we're not forced to extend certain classes just to make the
fetch phase happy.
Relates to #59332
FastVectorHighlighter uses the top-level reader to rewrite queries against, which
it gets via an IndexSearcher field on HitContext. However, we can already access
this top-level reader via HitContext's existing LeafReaderContext field.
This commit removes the unnecessary field and constructor parameter, and
changes the implementation of topLevelReader to go via ReaderUtils and
the leaf reader context.
This PR adds support for the 'fields' option in the following places:
* Anytime `inner_hits` is used, for both fetching nested/ child docs and field collapsing
* The `top_hits` aggregation
Addresses #61949.
Today some uncaught shard failures such as RejectedExecutionException skips the release of shard context
and let subsequent scroll requests access the same shard context again. Depending on how the other shards advanced,
this behavior can lead to missing data since scrolls always move forward.
In order to avoid hidden data loss, this commit ensures that we always release the context of shard search scroll requests whenever a failure
occurs locally. The shard search context will no longer exist in subsequent scroll requests which will lead to consistent shard failures
in the responses.
This change also modifies the retry tests of the reindex feature. Reindex retries scroll search request that contains a shard failure and
move on whenever the failure disappears. That is not compatible with how scrolls work and can lead to missing data as explained above.
That means that reindex will now report scroll failures when search rejection happen during the operation instead of skipping document
silently.
Finally this change removes an old TODO that was fulfilled with #61062.
This commit introduces a new API that manages point-in-times in x-pack
basic. Elasticsearch pit (point in time) is a lightweight view into the
state of the data as it existed when initiated. A search request by
default executes against the most recent point in time. In some cases,
it is preferred to perform multiple search requests using the same point
in time. For example, if refreshes happen between search_after requests,
then the results of those requests might not be consistent as changes
happening between searches are only visible to the more recent point in
time.
A point in time must be opened before being used in search requests. The
`keep_alive` parameter tells Elasticsearch how long it should keep a
point in time around.
```
POST /my_index/_pit?keep_alive=1m
```
The response from the above request includes a `id`, which should be
passed to the `id` of the `pit` parameter of search requests.
```
POST /_search
{
"query": {
"match" : {
"title" : "elasticsearch"
}
},
"pit": {
"id": "46ToAwMDaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQNpZHkFdXVpZDIrBm5vZGVfMwAAAAAAAAAAKgFjA2lkeQV1dWlkMioGbm9kZV8yAAAAAAAAAAAMAWICBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
"keep_alive": "1m"
}
}
```
Point-in-times are automatically closed when the `keep_alive` is
elapsed. However, keeping point-in-times has a cost; hence,
point-in-times should be closed as soon as they are no longer used in
search requests.
```
DELETE /_pit
{
"id" : "46ToAwMDaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQNpZHkFdXVpZDIrBm5vZGVfMwAAAAAAAAAAKgFjA2lkeQV1dWlkMioGbm9kZV8yAAAAAAAAAAAMAWIBBXV1aWQyAAA="
}
```
#### Notable works in this change:
- Move the search state to the coordinating node: #52741
- Allow searches with a specific reader context: #53989
- Add the ability to acquire readers in IndexShard: #54966
Relates #46523
Relates #26472
Co-authored-by: Jim Ferenczi <jimczi@apache.org>
This commit removes `integTest` task from all es-plugins.
Most relevant projects have been converted to use yamlRestTest, javaRestTest,
or internalClusterTest in prior PRs.
A few projects needed to be adjusted to allow complete removal of this task
* x-pack/plugin - converted to use yamlRestTest and javaRestTest
* plugins/repository-hdfs - kept the integTest task, but use `rest-test` plugin to define the task
* qa/die-with-dignity - convert to javaRestTest
* x-pack/qa/security-example-spi-extension - convert to javaRestTest
* multiple projects - remove the integTest.enabled = false (yay!)
related: #61802
related: #60630
related: #59444
related: #59089
related: #56841
related: #59939
related: #55896
This also adds the ability to define a serialization check on Parameters, used
in this case to only serialize format and locale parameters if the mapper is a
date range.
There are currently half a dozen ways to add plugins and modules for
test clusters to use. All of them require the calling project to peek
into the plugin or module they want to use to grab its bundlePlugin
task, and then both depend on that task, as well as extract the archive
path the task will produce. This creates cross project dependencies that
are difficult to detect, and if the dependent plugin/module has not yet
been configured, the build will fail because the task does not yet
exist.
This commit makes the plugin and module methods for testclusters
symmetetric, and simply adding a file provider directly, or a project
path that will produce the plugin/module zip. Internally this new
variant uses normal configuration/dependencies across projects to get
the zip artifact. It also has the added benefit of no longer needing the
caller to add to the test task a dependsOn for bundlePlugin task.
FetchSubPhase has two 'execute' methods, one which takes all hits to be examined,
and one which takes a single HitContext. It's not obvious which one should be implemented
by a given sub-phase, or if implementing both is a possibility; nor is it obvious that we first
run the hitExecute methods of all subphases, and then subsequently call all the
hitsExecute methods.
This commit reworks FetchSubPhase to replace these two variants with a processor class,
`FetchSubPhaseProcessor`, that is returned from a single `getProcessor` method. This
processor class has two methods, `setNextReader()` and `process`. FetchPhase collects
processors from all its subphases (if a subphase does not need to execute on the current
search context, it can return `null` from `getProcessor`). It then sorts its hits by docid, and
groups them by lucene leaf reader. For each reader group, it calls `setNextReader()` on
all non-null processors, and then passes each doc id to `process()`.
Implementations of fetch sub phases can divide their concerns into per-request, per-reader
and per-document sections, and no longer need to worry about sorting docs or dealing with
reader slices.
FetchSubPhase now provides a FetchSubPhaseExecutor that exposes two methods,
setNextReader(LeafReaderContext) and execute(HitContext). The parent FetchPhase collects all
these executors together (if a phase should not be executed, then it returns null here); then
it sorts hits, and groups them by reader; for each reader it calls setNextReader, and then
execute for each hit in turn. Individual sub phases no longer need to concern themselves with
sorting docs or keeping track of readers; global structures can be built in
getExecutor(SearchContext), per-reader structures in setNextReader and per-doc in execute.
This commit adds a test to MapperTestCase that explicitly checks that a mapper can
serialize all its default values, and that this serialization can then be re-parsed. Note that
the test is disabled for non-parametrized mappers as their serialization may in some cases
output parameters that are not accepted. Gradually moving all mappers to parametrized
form will address this.
The commit also contains a fix to keyword mappers, which were not correctly serializing
the similarity parameter; this partially addresses #61563. It also enables `null` as a
value for `null_value` on `scaled_float`, as a follow-up to #61798
We frequently use `long`s with `BitArray` in aggs and right now we have
to assert that the `long` fits in an `int`. This adds support for `long`
to `BitArray` so we don't need those assertions.
This commit enhances the verbose output for the
`_ingest/pipeline/_simulate?verbose` api. Specifically
this adds the following:
* the pipeline processor is now included in the output
* the conditional (if) and result is now included in the output iff it was defined
* a status field is always displayed. the possible values of status are
* `success` - if the processor ran with out errors
* `error` - if the processor ran but threw an error that was not ingored
* `error_ignored` - if the processor ran but threw an error that was ingored
* `skipped` - if the process did not run (currently only possible if the if condition evaluates to false)
* `dropped` - if the the `drop` processor ran and dropped the document
* a `processor_type` field for the type of processor (e.g. set, rename, etc.)
* throw a better error if trying to simulate with a pipeline that does not exist
closes#56004
Runtime fields need to have a SearchLookup available, when building their fielddata implementations, so that they can look up other fields, runtime or not.
To achieve that, we add a Supplier<SearchLookup> argument to the existing MappedFieldType#fielddataBuilder method.
As we introduce the ability to look up other fields while building fielddata for mapped fields, we implicitly add the ability for a field to require other fields. This requires some protection mechanism that detects dependency cycles to prevent stack overflow errors.
With this commit we also introduce detection for cycles, as well as a limit on the depth of the references for a runtime field. Note that we also plan on introducing cycles detection at compile time, so the runtime cycles detection is a last resort to prevent stack overflow errors but we hope that we can reject runtime fields from being registered in the mappings when they create a cycle in their definition.
Note that this commit does not introduce any production implementation of runtime fields, but is rather a pre-requisite to merge the runtime fields feature branch.
This is a breaking change for MapperPlugins that plug in a mapper, as the signature of MappedFieldType#fielddataBuilder changes from taking a single argument (the index name), to also accept a Supplier<SearchLookup>.
Relates to #59332
Co-authored-by: Nik Everett <nik9000@gmail.com>
This commit removes the tasks module that only existed to define the
tasks result index, `.tasks`, as a system index. The definition for
the tasks results system index descriptor is moved to the
`SystemIndices` class with a check that no other plugin or module
attempts to define an entry with the same source.
Additionally, this change also makes the pattern for the tasks result
index a wildcard pattern since we will need this when the index is
upgraded (reindex to new name and then alias that to .tasks).
Backport of #61540
DeprecationLogger's constructor should not create two loggers. It was
taking parent logger instance, changing its name with a .deprecation
prefix and creating a new logger.
Most of the time parent logger was not needed. It was causing Log4j to
unnecessarily cache the unused parent logger instance.
depends on #61515
backports #58435
Splitting DeprecationLogger into two. HeaderWarningLogger - responsible for adding a response warning headers and ThrottlingLogger - responsible for limiting the duplicated log entries for the same key (previously deprecateAndMaybeLog).
Introducing A ThrottlingAndHeaderWarningLogger which is a base for other common logging usages where both response warning header and logging throttling was needed.
relates #55699
relates #52369
backports #55941
Before when a value was copied to a field through a parent field or `copy_to`,
we parsed it using the `FieldMapper` from the source field. Instead we should
parse it using the target `FieldMapper`. This ensures that we apply the
appropriate mapping type and options to the copied value.
To implement the fix cleanly, this PR refactors the value parsing strategy. Now
instead of looking up values directly, field mappers produce a helper object
`ValueFetcher`. The value fetchers are responsible for almost all aspects of
fetching, including looking up the right paths in the _source.
The PR is fairly big but each commit can be reviewed individually.
Fixes#61033.
In addition, this commit converts ScaledFloatFieldMapper as it was relying
on a number of static values taken from NumberFieldMapper that had changed
or been removed.
This switches a few tests for field mappers from `ESSingleNodeTestCase`
to `ESTestCase` because, in general, we prefer to avoid
`ESSingleNodeTestCase` when we can because it is slow and "big". "Big"
here means that it pulls in an entire node, making it difficult to
reason about what you are testing.