In 2.0 we added plugin descriptors which require defining a name and
description for the plugin. However, we still have name() and
description() which must be overriden from the Plugin class. This still
exists for classpath plugins. But classpath plugins are mainly for
tests, and even then, referring to classpath plugins with their class is
a better idea. This change removes name() and description(), replacing
the name for classpath plugins with the full class name.
This interface used to have dedicated methods to prevent calling execute
methods. These methods are unnecessary as the checks can simply be
done inside the execute methods itself. This simplifies the interface
as well as its usage.
This adds a get task API that supports GET /_tasks/${taskId} and
removes that responsibility from the list tasks API. The get task
API supports wait_for_complation just as the list tasks API does
but doesn't support any of the list task API's filters. In exchange,
it supports falling back to the .results index when the task isn't
running any more. Like any good GET API it 404s when it doesn't
find the task.
Then we change reindex, update-by-query, and delete-by-query to
persist the task result when wait_for_completion=false. The leads
to the neat behavior that, once you start a reindex with
wait_for_completion=false, you can fetch the result of the task by
using the get task API and see the result when it has finished.
Also rename the .results index to .tasks.
Adds `/regex/` as a regex constructor. A couple of fun points:
1. This makes generic the idea of arbitrary stuff adding a constant.
Both SFunction and LRegex create a statically initialized constant.
Both go through Locals to do this because they LRegex isn't directly
iterable from SScript.
2. Differentiating `/` as-in-division from `/` as-in-start-of-regex
is hard. See:
http://www-archive.mozilla.org/js/language/js20-2002-04/rationale/syntax.html#regular-expressions
The javascript folks have a way, way tougher time of it then we do
because they have semicolon insertion. We have the much simpler
delimiter rules. Even with our simpler life we still have to add
a hack to get lexing `/regex/` to work properly. I chose to add
token-level lookbehind because it seems to be a pretty contained hack.
I considered and rejected lexer modes, a lexer member variable,
having the parser set variables on the lexer (this is a fairly common
solution for js, I believe), and moving regex parsing to the parser
level.
3. I've only added a very small subset of java.util.regex to the
whitelist because it is the subset I needed to test LRegex sanely.
More deserves to be added, and maybe more regex syntax like `=~` and
`==~`. Those can probably be added without too much pain.
Add `}` is statement delimiter but only in places where it is
otherwise a valid part of the syntax, specificall the end of a block.
We do this by matching but not consuming it. Antlr 4 doesn't have
syntax for this so we have to kind of hack it together by actually
matching the `}` and then seeking backwards in the token stream to
"unmatch" it. This looks reasonably efficient. Not perfect, but way
better than the alternatives.
I tried and rejected a few options:
1. Actually consuming the `}` and piping a boolean all through the
grammar from the last statement in a block to the delimiter. This
ended up being a rather large change and made the grammar way more
complicated.
2. Adding a semantic predicate to delimiter that just does the
lookahead. This doesn't work out well because it doesn't work (I
never figured out why) and because it generates an *amazing*
`adaptivePredict` which makes a super huge DFA. It looks super
inefficient.
Closes#18821
Writeable is better for immutable objects like TimeValue.
Switch to writeZLong which takes up less space than the original
writeLong in the majority of cases. Since we expect negative
TimeValues we shouldn't use
writeVLong.
Today we use a random source of UUIDs for assigning allocation IDs,
cluster IDs, etc. Yet, the source of randomness for this is not
reproducible in tests. Since allocation IDs end up as keys in hash maps,
this means allocation decisions and not reproducible in tests and this
leads to non-reproducible test failures. This commit modifies the
behavior of random UUIDs so that they are reproducible under tests. The
behavior for production code is not changed, we still use a true source
of secure randomness but under tests we just use a reproducible source
of non-secure randomness.
It is important to note that there is a test,
UUIDTests#testThreadedRandomUUID that relies on the UUIDs being truly
random. Thus, we have to modify the setup for this test to use a true
source of randomness. Thus, this is one test that will never be
reproducible but it is intentionally so.
Relates #18808
The painless whitelist has a lot of self-checking, in this case, it checks
for missing covariant overrides. It fails on java 9, because LocalDate.getEra()
now returns IsoEra instead of Era: https://bugs.openjdk.java.net/browse/JDK-8072746
To our checker, it thinks we were lazy with whitelisting :)
This means painless works on java 9 again
Folded grok processor into ingest-common module.
The rest tests have been moved to ingest-common module as well, because these tests don't run in the rest-api-spec module but in the distribution:integ-test-zip module
and adding a test plugin there felt just wrong to me. I think this is ok. I left a tiny ingest rest test behind in that tests with an empty pipeline.
Removed messy tests, these tests were already covered in the rest tests
Added ingest test plugin in test infra so that each module testing integration with ingest doesn't need write its own plugin
Moved reindex ingest tests to qa module
Closes#18490
This commit refactors the handling of thread pool settings so that the
individual settings can be registered rather than registering the top
level group. With this refactoring, individual plugins must now register
their own settings for custom thread pools that they need, but a
dedicated API is provided for this in the thread pool module. This
commit also renames the prefix on the thread pool settings from
"threadpool" to "thread_pool". This enables a hard break on the settings
so that:
- some of the settings can be given more sensible names (e.g., the max
number of threads in a scaling thread pool is now named "max" instead
of "size")
- change the soft limit on the number of threads in the bulk and
indexing thread pools to a hard limit
- the settings names for custom plugins for thread pools can be
prefixed (e.g., "xpack.watcher.thread_pool.size")
- remove dynamic thread pool settings
Relates #18674