* [ML] add new `custom` field to trained model processors (#59542)
This commit adds the new configurable field `custom`.
`custom` indicates if the preprocessor was submitted by a user or automatically created by the analytics job.
Eventually, this field will be used in calculating feature importance. When `custom` is true, the feature importance for
the processed fields is calculated. When `false` the current behavior is the same (we calculate the importance for the originating field/feature).
This also adds new required methods to the preprocessor interface. If users are to supply their own preprocessors
in the analytics job configuration, we need to know the input and output field names.
This paves the data layer way so that exceptionally large models are partitioned across multiple documents.
This change means that nodes before 7.8.0 will not be able to use trained inference models created on nodes on or after 7.8.0.
I chose the definition document limit to be 100. This *SHOULD* be plenty for any large model. One of the largest models that I have created so far had the following stats:
~314MB of inflated JSON, ~66MB when compressed, ~177MB of heap.
With the chunking sizes of `16 * 1024 * 1024` its compressed string could be partitioned to 5 documents.
Supporting models 20 times this size (compressed) seems adequate for now.
* [ML] adding prediction_field_type to inference config (#55128)
Data frame analytics dynamically determines the classification field type. This field type then dictates the encoded JSON that is written to Elasticsearch.
Inference needs to know about this field type so that it may provide the EXACT SAME predicted values as analytics.
Here is added a new field `prediction_field_type` which indicates the desired type. Options are: `string` (DEFAULT), `number`, `boolean` (where close_to(1.0) == true, false otherwise).
Analytics provides the default `prediction_field_type` when the model is created from the process.
* [ML] add new inference_config field to trained model config (#54421)
A new field called `inference_config` is now added to the trained model config object. This new field allows for default inference settings from analytics or some external model builder.
The inference processor can still override whatever is set as the default in the trained model config.
* fixing for backport