This adds new plugin level circuit breaker for the ML plugin.
`model_inference` is the circuit breaker qualified name.
Right now it simply adds to the breaker when the model is loaded (and possibly breaking) and removing from the breaker when the model is unloaded.
This change introduces a new setting,
xpack.ml.process_connect_timeout, to enable
the timeout for one of the external ML processes
to connect to the ES JVM to be increased.
The timeout may need to be increased if many
processes are being started simultaneously on
the same machine. This is unlikely in clusters
with many ML nodes, as we balance the processes
across the ML nodes, but can happen in clusters
with a single ML node and a high value for
xpack.ml.node_concurrent_job_allocations.
This change does the following:
1. Makes the per-node setting xpack.ml.max_open_jobs
into a cluster-wide dynamic setting
2. Changes the job node selection to continue to use the
per-node attributes storing the maximum number of open
jobs if any node in the cluster is older than 7.1, and
use the dynamic cluster-wide setting if all nodes are on
7.1 or later
3. Changes the docs to reflect this
4. Changes the thread pools for native process communication
from fixed size to scaling, to support the dynamic nature
of xpack.ml.max_open_jobs
5. Renames the autodetect thread pool to the job comms
thread pool to make clear that it will be used for other
types of ML jobs (data frame analytics in particular)
Backport of #39320
* Adding new xpack.ml.max_lazy_ml_nodes setting to docs
* Fixing docs, making it clearer what the setting does
* Adding note about external process need