This adds a new `randomize_seed` for regression and classification.
When not explicitly set, the seed is randomly generated. One can
reuse the seed in a similar job in order to ensure the same docs
are picked for training.
Backport of #49990
Reindex sort never gave a guarantee about the order of documents being
indexed into the destination, though it could give a sense of locality
of source data.
It prevents us from doing resilient reindex and other optimizations and
it has therefore been deprecated.
Related to #47567
Reindex sort never gave a guarantee about the order of documents being
indexed into the destination, though it could give a sense of locality
of source data.
It prevents us from doing resilient reindex and other optimizations and
it has therefore been deprecated.
Related to #47567
This adds a `_source` setting under the `source` setting of a data
frame analytics config. The new `_source` is reusing the structure
of a `FetchSourceContext` like `analyzed_fields` does. Specifying
includes and excludes for source allows selecting which fields
will get reindexed and will be available in the destination index.
Closes#49531
Backport of #49690
This commit replaces the _estimate_memory_usage API with
a new API, the _explain API.
The API consolidates information that is useful before
creating a data frame analytics job.
It includes:
- memory estimation
- field selection explanation
Memory estimation is moved here from what was previously
calculated in the _estimate_memory_usage API.
Field selection is a new feature that explains to the user
whether each available field was selected to be included or
not in the analysis. In the case it was not included, it also
explains the reason why.
Backport of #49455
PR #25543 removed the `_uid` field in favor of the `_id` field,
including for use in slicing.
This removes an outdated reference to `_uid` in our reindex docs.
This commit adds HLRC support and documentation for the SLM Start and
Stop APIs, as well as updating existing documentation where appropriate.
This commit also ensures that the SLM APIs are properly included in the
HLRC documentation.
Adds the following parameters to `outlier_detection`:
- `compute_feature_influence` (boolean): whether to compute or not
feature influence scores
- `outlier_fraction` (double): the proportion of the data set assumed
to be outlying prior to running outlier detection
- `standardization_enabled` (boolean): whether to apply standardization
to the feature values
Backport of #47600
This commit adds support to retrieve all API keys if the authenticated
user is authorized to do so.
This removes the restriction of specifying one of the
parameters (like id, name, username and/or realm name)
when the `owner` is set to `false`.
Closes#46887
* Add API to execute SLM retention on-demand (#47405)
This is a backport of #47405
This commit adds the `/_slm/_execute_retention` API endpoint. This
endpoint kicks off SLM retention and then returns immediately.
This in particular allows us to run retention without scheduling it
(for entirely manual invocation) or perform a one-off cleanup.
This commit also includes HLRC for the new API, and fixes an issue
in SLMSnapshotBlockingIntegTests where retention invoked prior to the
test completing could resurrect an index the internal test cluster
cleanup had already deleted.
Resolves#46508
Relates to #43663
Add a section to both the low level and high level client documentation on asynchronous usage and `Cancellable` added for #44802
Co-Authored-By: Lee Hinman <dakrone@users.noreply.github.com>
Changed the signature of AbstractResponseTestCase#createServerTestInstance(...)
to include the randomly selected xcontent type. This is needed for the
creating a server response instance with a query which is represented as BytesReference.
Maybe this should go into a different change?
This PR also includes HLRC docs for the get policy api.
Relates to #32789