Lucene 6.2 added index and query support for numeric ranges. This commit adds a new RangeFieldMapper for indexing numeric (int, long, float, double) and date ranges and creating appropriate range and term queries. The design is similar to NumericFieldMapper in that it uses a RangeType enumerator for implementing the logic specific to each type. The following range types are supported by this field mapper: int_range, float_range, long_range, double_range, date_range.
Lucene does not provide a DocValue field specific to RangeField types so the RangeFieldMapper implements a CustomRangeDocValuesField for handling doc value support.
When executing a Range query over a Range field, the RangeQueryBuilder has been enhanced to accept a new relation parameter for defining the type of query as one of: WITHIN, CONTAINS, INTERSECTS. This provides support for finding all ranges that are related to a specific range in a desired way. As with other spatial queries, DISJOINT can be achieved as a MUST_NOT of an INTERSECTS query.
This changes only the query parsing behavior to be strict when searching on
boolean values. We continue to accept the variety of values during index time,
but searches will only be parsed using `"true"` or `"false"`.
Resolves#21545
* Allows for an array of index template patterns to be provided to an
index template, and rename the field from 'template' to 'index_pattern'.
Closes#20690
With the cut over to LatLonPoint the geohash, geohash_precision, lat_lon, and geohash_prefix parameters have been removed. This commit fixes the doc build by removing the remaining dangling references to these removed parameters.
This includes:
- All regular numeric types such as int, long, scaled-float, double, etc
- IP addresses
- Dates
- Geopoints and Geoshapes
Relates to #19784
This changes Elasticsearch to automatically downgrade `text` and
`keyword` fields into appropriate `string` fields when changing the
mapping of indexes imported from 2.x. This allows users to use the
modern, documented syntax against 2.x indexes. It also makes it clear
that reindexing in order to recreate the index in 5.0 is required for
any long lived indexes. This change is useful for the times when you
can't (cluster is just starting, not stable enough for reindex) or
shouldn't (index will only live 90 days or something).
Fix field examples to make documents actually visible
This commit adds refresh calls to field examples an removes not working
`_routing` and `_field_names` script access.
Closes#20118
This includes:
- All regular numeric types such as int, long, scaled-float, double, etc
- IP addresses
- Dates
- Geopoints and Geoshapes
Relates to #19784
Adds `warnings` syntax to the yaml test that allows you to expect
a `Warning` header that looks like:
```
- do:
warnings:
- '[index] is deprecated'
- quotes are not required because yaml
- but this argument is always a list, never a single string
- no matter how many warnings you expect
get:
index: test
type: test
id: 1
```
These are accessible from the docs with:
```
// TEST[warning:some warning]
```
This should help to force you to update the docs if you deprecate
something. You *must* add the warnings marker to the docs or the build
will fail. While you are there you *should* update the docs to add
deprecation warnings visible in the rendered results.
This is a tentative to revive #15939 motivated by elastic/beats#1941.
Half-floats are a pretty bad option for storing percentages. They would likely
require 2 bytes all the time while they don't need more than one byte.
So this PR exposes a new `scaled_float` type that requires a `scaling_factor`
and internally indexes `value*scaling_factor` in a long field. Compared to the
original PR it exposes a lower-level API so that the trade-offs are clearer and
avoids any reference to fixed precision that might imply that this type is more
accurate (actually it is *less* accurate).
In addition to being more space-efficient for some use-cases that beats is
interested in, this is also faster that `half_float` unless we can improve the
efficiency of decoding half-float bits (which is currently done using software)
or until Java gets first-class support for half-floats.
If there are percolator queries containing `range` queries with ranges based on the current time then this can lead to incorrect results if the `percolate` query gets cached. These ranges are changing each time the `percolate` query gets executed and if this query gets cached then the results will be based on how the range was at the time when the `percolate` query got cached.
The ExtractQueryTermsService has been renamed `QueryAnalyzer` and now only deals with analyzing the query (extracting terms and deciding if the entire query is a verified match) . The `PercolatorFieldMapper` is responsible for adding the right fields based on the analysis the `QueryAnalyzer` has performed, because this is highly dependent on the field mappings. Also the `PercolatorFieldMapper` is responsible for creating the percolate query.
Rename `fields` to `stored_fields` and add `docvalue_fields`
`stored_fields` parameter will no longer try to retrieve fields from the _source but will only return stored fields.
`fields` will throw an exception if the user uses it.
Add `docvalue_fields` as an adjunct to `fielddata_fields` which is deprecated. `docvalue_fields` will try to load the value from the docvalue and fallback to fielddata cache if docvalues are not enabled on that field.
Closes#18943
`stored_fields` parameter will no longer try to retrieve fields from the _source but will only return stored fields.
`fields` will throw an exception if the user uses it.
Add `docvalue_fields` as an adjunct to `fielddata_fields` which is deprecated. `docvalue_fields` will try to load the value from the docvalue and fallback to fielddata cache if docvalues are not enabled on that field.
Closes#18943
They have been implemented in https://issues.apache.org/jira/browse/LUCENE-7289.
Ranges are implemented so that the accuracy loss only occurs at index time,
which means that if you are searching for values between A and B, the query will
match exactly all documents whose value rounded to the closest half-float point
is between A and B.