The date_histogram accepts an interval which can be either a calendar
interval (DST-aware, leap seconds, arbitrary length of months, etc) or
fixed interval (strict multiples of SI units). Unfortunately this is inferred
by first trying to parse as a calendar interval, then falling back to fixed
if that fails.
This leads to confusing arrangement where `1d` == calendar, but
`2d` == fixed. And if you want a day of fixed time, you have to
specify `24h` (e.g. the next smallest unit). This arrangement is very
error-prone for users.
This PR adds `calendar_interval` and `fixed_interval` parameters to any
code that uses intervals (date_histogram, rollup, composite, datafeed, etc).
Calendar only accepts calendar intervals, fixed accepts any combination of
units (meaning `1d` can be used to specify `24h` in fixed time), and both
are mutually exclusive.
The old interval behavior is deprecated and will throw a deprecation warning.
It is also mutually exclusive with the two new parameters. In the future the
old dual-purpose interval will be removed.
The change applies to both REST and java clients.
This pipeline aggregation gives the user the ability to script functions that "move" across a window
of data, instead of single data points. It is the scripted version of MovingAvg pipeline agg.
Through custom script contexts, we expose a number of convenience methods:
- MovingFunctions.max()
- MovingFunctions.min()
- MovingFunctions.sum()
- MovingFunctions.unweightedAvg()
- MovingFunctions.linearWeightedAvg()
- MovingFunctions.ewma()
- MovingFunctions.holt()
- MovingFunctions.holtWinters()
- MovingFunctions.stdDev()
The user can also define any arbitrary logic via their own scripting, or combine with the above methods.
Most of the examples in the pipeline aggregation docs use a small
"sales" test data set and I converted all of the examples that use
it to `// CONSOLE`. There are still a bunch of snippets in the pipeline
aggregation docs that aren't `// CONSOLE` so they aren't tested. Most
of them are "this is the most basic form of this aggregation" so they
are more immune to errors and bit rot then the examples that I converted.
I'd like to do something with them as well but I'm not sure what.
Also, the moving average docs and serial diff docs didn't get a lot of
love from this pass because they don't use the test data set or follow
the same general layout.
Relates to #18160