Also include _type and _id for parent/child hits inside inner hits.
In the case of top_hits aggregation the nested search hits are
directly returned and are not grouped by a root or parent document, so
it is important to include the _id and _index attributes in order to know
to what documents these nested search hits belong to.
Closes#27053
Today we require users to prepare their indices for split operations.
Yet, we can do this automatically when an index is created which would
make the split feature a much more appealing option since it doesn't have
any 3rd party prerequisites anymore.
This change automatically sets the number of routinng shards such that
an index is guaranteed to be able to split once into twice as many shards.
The number of routing shards is scaled towards the default shard limit per index
such that indices with a smaller amount of shards can be split more often than
larger ones. For instance an index with 1 or 2 shards can be split 10x
(until it approaches 1024 shards) while an index created with 128 shards can only
be split 3x by a factor of 2. Please note this is just a default value and users
can still prepare their indices with `index.number_of_routing_shards` for custom
splitting.
NOTE: this change has an impact on the document distribution since we are changing
the hash space. Documents are still uniformly distributed across all shards but since
we are artificually changing the number of buckets in the consistent hashign space
document might be hashed into different shards compared to previous versions.
This is a 7.0 only change.
* This change adds a module called `aggs-composite` that defines a new aggregation named `composite`.
The `composite` aggregation is a multi-buckets aggregation that creates composite buckets made of multiple sources.
The sources for each bucket can be defined as:
* A `terms` source, values are extracted from a field or a script.
* A `date_histogram` source, values are extracted from a date field and rounded to the provided interval.
This aggregation can be used to retrieve all buckets of a deeply nested aggregation by flattening the nested aggregation in composite buckets.
A composite buckets is composed of one value per source and is built for each document as the combinations of values in the provided sources.
For instance the following aggregation:
````
"test_agg": {
"terms": {
"field": "field1"
},
"aggs": {
"nested_test_agg":
"terms": {
"field": "field2"
}
}
}
````
... which retrieves the top N terms for `field1` and for each top term in `field1` the top N terms for `field2`, can be replaced by a `composite` aggregation in order to retrieve **all** the combinations of `field1`, `field2` in the matching documents:
````
"composite_agg": {
"composite": {
"sources": [
{
"field1": {
"terms": {
"field": "field1"
}
}
},
{
"field2": {
"terms": {
"field": "field2"
}
}
},
}
}
````
The response of the aggregation looks like this:
````
"aggregations": {
"composite_agg": {
"buckets": [
{
"key": {
"field1": "alabama",
"field2": "almanach"
},
"doc_count": 100
},
{
"key": {
"field1": "alabama",
"field2": "calendar"
},
"doc_count": 1
},
{
"key": {
"field1": "arizona",
"field2": "calendar"
},
"doc_count": 1
}
]
}
}
````
By default this aggregation returns 10 buckets sorted in ascending order of the composite key.
Pagination can be achieved by providing `after` values, the values of the composite key to aggregate after.
For instance the following aggregation will aggregate all composite keys that sorts after `arizona, calendar`:
````
"composite_agg": {
"composite": {
"after": {"field1": "alabama", "field2": "calendar"},
"size": 100,
"sources": [
{
"field1": {
"terms": {
"field": "field1"
}
}
},
{
"field2": {
"terms": {
"field": "field2"
}
}
}
}
}
````
This aggregation is optimized for indices that set an index sorting that match the composite source definition.
For instance the aggregation above could run faster on indices that defines an index sorting like this:
````
"settings": {
"index.sort.field": ["field1", "field2"]
}
````
In this case the `composite` aggregation can early terminate on each segment.
This aggregation also accepts multi-valued field but disables early termination for these fields even if index sorting matches the sources definition.
This is mandatory because index sorting picks only one value per document to perform the sort.
This commit adds a parent pipeline aggregation that allows
sorting the buckets of a parent multi-bucket aggregation.
The aggregation also offers [from] and [size] parameters
in order to truncate the result as desired.
Closes#14928
Due to a change happened via #26102 to make the nested source consistent
with or without source filtering, the _source of a nested inner hit was
always wrapped in the parent path. This turned out to be not ideal for
users relying on the nested source, as it would require additional parsing
on the client side. This change fixes this, the _source of nested inner hits
is now no longer wrapped by parent json objects, irregardless of whether
the _source is included as is or source filtering is used.
Internally source filtering and highlighting relies on the fact that the
_source of nested inner hits are accessible by its full field path, so
in order to now break this, the conversion of the _source into its binary
form is performed in FetchSourceSubPhase, after any potential source filtering
is performed to make sure the structure of _source of the nested inner hit
is consistent irregardless if source filtering is performed.
PR for #26944Closes#26944
* Deprecate global_ordinals_hash and global_ordinals_low_cardinality
This change deprecates the `global_ordinals_hash` and `global_ordinals_low_cardinality` and
makes the `global_ordinals` execution hint choose internally if global ords should be remapped or use the segment ord directly.
These hints are too sensitive and expert to be exposed and we should be able to take the right decision internally based on the agg tree.
Currently the `precision` parameter must be a precision level
in the range of [1,12]. In #5042 it was suggested also supporting
distance units like "1km" to automatically approcimate the needed
precision level. This change adds this support to the Rest API by
making use of GeoUtils#geoHashLevelsForPrecision.
Plain integer values without a unit are still treated as precision
levels like before. Distance values that are too small to be represented
by a precision level of 12 (values approx. less than 0.056m) are
rejected.
Closes#5042
All of the snippets in our docs marked with `// TESTRESPONSE` are
checked against the response from Elasticsearch but, due to the
way they are implemented they are actually parsed as YAML instead
of JSON. Luckilly, all valid JSON is valid YAML! Unfurtunately
that means that invalid JSON has snuck into the exmples!
This adds a step during the build to parse them as JSON and fail
the build if they don't parse.
But no! It isn't quite that simple. The displayed text of some of
these responses looks like:
```
{
...
"aggregations": {
"range": {
"buckets": [
{
"to": 1.4436576E12,
"to_as_string": "10-2015",
"doc_count": 7,
"key": "*-10-2015"
},
{
"from": 1.4436576E12,
"from_as_string": "10-2015",
"doc_count": 0,
"key": "10-2015-*"
}
]
}
}
}
```
Note the `...` which isn't valid json but we like it anyway and want
it in the output. We use substitution rules to convert the `...`
into the response we expect. That yields a response that looks like:
```
{
"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,
"aggregations": {
"range": {
"buckets": [
{
"to": 1.4436576E12,
"to_as_string": "10-2015",
"doc_count": 7,
"key": "*-10-2015"
},
{
"from": 1.4436576E12,
"from_as_string": "10-2015",
"doc_count": 0,
"key": "10-2015-*"
}
]
}
}
}
```
That is what the tests consume but it isn't valid JSON! Oh no! We don't
want to go update all the substitution rules because that'd be huge and,
ultimately, wouldn't buy much. So we quote the `$body.took` bits before
parsing the JSON.
Note the responses that we use for the `_cat` APIs are all converted into
regexes and there is no expectation that they are valid JSON.
Closes#26233
Today if we search across a large amount of shards we hit every shard. Yet, it's quite
common to search across an index pattern for time based indices but filtering will exclude
all results outside a certain time range ie. `now-3d`. While the search can potentially hit
hundreds of shards the majority of the shards might yield 0 results since there is not document
that is within this date range. Kibana for instance does this regularly but used `_field_stats`
to optimize the indexes they need to query. Now with the deprecation of `_field_stats` and it's upcoming removal a single dashboard in kibana can potentially turn into searches hitting hundreds or thousands of shards and that can easily cause search rejections even though the most of the requests are very likely super cheap and only need a query rewriting to early terminate with 0 results.
This change adds a pre-filter phase for searches that can, if the number of shards are higher than a the `pre_filter_shard_size` threshold (defaults to 128 shards), fan out to the shards
and check if the query can potentially match any documents at all. While false positives are possible, a negative response means that no matches are possible. These requests are not subject to rejection and can greatly reduce the number of shards a request needs to hit. The approach here is preferable to the kibana approach with field stats since it correctly handles aliases and uses the correct threadpools to execute these requests. Further it's completely transparent to the user and improves scalability of elasticsearch in general on large clusters.
This commit adds back "id" as the key within a script to specify a
stored script (which with file scripts now gone is no longer ambiguous).
It also adds "source" as a replacement for "code". This is in an attempt
to normalize how scripts are specified across both put stored scripts and script usages, including search template requests. This also deprecates the old inline/stored keys.
This commit adds a new bg_count field to the REST response of
SignificantTerms aggregations. Similarly to the bg_count that already
exists in significant terms buckets, this new bg_count field is set at
the aggregation level and is populated with the superset size value.
This commit adds a `doc_count` field to the response body of Matrix
Stats aggregation. It exposes the number of documents involved in
the computation of statistics, a value that can already be retrieved using
the method MatrixStats.getDocCount() in the Java API.
* SignificantText aggregation - like significant_terms but doesn’t require fielddata=true, recommended used with `sampler` agg to limit expense of tokenizing docs and takes optional `filter_duplicate_text`:true setting to avoid stats skew from repeated sections of text in search results.
Closes#23674
This commit adds support for histogram and date_histogram agg compound order by refactoring and reusing terms agg order code. The major change is that the Terms.Order and Histogram.Order classes have been replaced/refactored into a new class BucketOrder. This is a breaking change for the Java Transport API. For backward compatibility with previous ES versions the (date)histogram compound order will use the first order. Also the _term and _time aggregation order keys have been deprecated; replaced by _key.
Relates to #20003: now that all these aggregations use the same order code, it should be easier to move validation to parse time (as a follow up PR).
Relates to #14771: histogram and date_histogram aggregation order will now be validated at reduce time.
Closes#23613: if a single BucketOrder that is not a tie-breaker is added with the Java Transport API, it will be converted into a CompoundOrder with a tie-breaker.
Currently we don't write the count value to the geo_centroid aggregation rest response,
but it is provided via the java api and the count() method in the GeoCentroid interface.
We should add this parameter to the rest output and also provide it via the getProperty()
method.
This adds the `index.mapping.single_type` setting, which enforces that indices
have at most one type when it is true. The default value is true for 6.0+ indices
and false for old indices.
Relates #15613
We want to upgrade to Lucene 7 ahead of time in order to be able to check whether it causes any trouble to Elasticsearch before Lucene 7.0 gets released. From a user perspective, the main benefit of this upgrade is the enhanced support for sparse fields, whose resource consumption is now function of the number of docs that have a value rather than the total number of docs in the index.
Some notes about the change:
- it includes the deprecation of the `disable_coord` parameter of the `bool` and `common_terms` queries: Lucene has removed support for coord factors
- it includes the deprecation of the `index.similarity.base` expert setting, since it was only useful to configure coords and query norms, which have both been removed
- two tests have been marked with `@AwaitsFix` because of #23966, which we intend to address after the merge
Turns the top example in each of the geo aggregation docs into a working
example that can be opened in CONSOLE. Subsequent examples can all also
be opened in console and will work after you've run the first example.
All examples are tested as part of the build.