This commit adds a new dynamic cluster setting named `search.max_buckets` that can be used to limit the number of buckets created per shard or by the reduce phase. Each multi bucket aggregator can consume buckets during the final build of the aggregation at the shard level or during the reduce phase (final or not) in the coordinating node. When an aggregator consumes a bucket, a global count for the request is incremented and if this number is greater than the limit an exception is thrown (TooManyBuckets exception).
This change adds the ability for multi bucket aggregator to "consume" buckets in the global limit, the default is 10,000. It's an opt-in consumer so each multi-bucket aggregator must explicitly call the consumer when a bucket is added in the response.
Closes#27452#26012
* This change adds a module called `aggs-composite` that defines a new aggregation named `composite`.
The `composite` aggregation is a multi-buckets aggregation that creates composite buckets made of multiple sources.
The sources for each bucket can be defined as:
* A `terms` source, values are extracted from a field or a script.
* A `date_histogram` source, values are extracted from a date field and rounded to the provided interval.
This aggregation can be used to retrieve all buckets of a deeply nested aggregation by flattening the nested aggregation in composite buckets.
A composite buckets is composed of one value per source and is built for each document as the combinations of values in the provided sources.
For instance the following aggregation:
````
"test_agg": {
"terms": {
"field": "field1"
},
"aggs": {
"nested_test_agg":
"terms": {
"field": "field2"
}
}
}
````
... which retrieves the top N terms for `field1` and for each top term in `field1` the top N terms for `field2`, can be replaced by a `composite` aggregation in order to retrieve **all** the combinations of `field1`, `field2` in the matching documents:
````
"composite_agg": {
"composite": {
"sources": [
{
"field1": {
"terms": {
"field": "field1"
}
}
},
{
"field2": {
"terms": {
"field": "field2"
}
}
},
}
}
````
The response of the aggregation looks like this:
````
"aggregations": {
"composite_agg": {
"buckets": [
{
"key": {
"field1": "alabama",
"field2": "almanach"
},
"doc_count": 100
},
{
"key": {
"field1": "alabama",
"field2": "calendar"
},
"doc_count": 1
},
{
"key": {
"field1": "arizona",
"field2": "calendar"
},
"doc_count": 1
}
]
}
}
````
By default this aggregation returns 10 buckets sorted in ascending order of the composite key.
Pagination can be achieved by providing `after` values, the values of the composite key to aggregate after.
For instance the following aggregation will aggregate all composite keys that sorts after `arizona, calendar`:
````
"composite_agg": {
"composite": {
"after": {"field1": "alabama", "field2": "calendar"},
"size": 100,
"sources": [
{
"field1": {
"terms": {
"field": "field1"
}
}
},
{
"field2": {
"terms": {
"field": "field2"
}
}
}
}
}
````
This aggregation is optimized for indices that set an index sorting that match the composite source definition.
For instance the aggregation above could run faster on indices that defines an index sorting like this:
````
"settings": {
"index.sort.field": ["field1", "field2"]
}
````
In this case the `composite` aggregation can early terminate on each segment.
This aggregation also accepts multi-valued field but disables early termination for these fields even if index sorting matches the sources definition.
This is mandatory because index sorting picks only one value per document to perform the sort.
* SignificantText aggregation - like significant_terms but doesn’t require fielddata=true, recommended used with `sampler` agg to limit expense of tokenizing docs and takes optional `filter_duplicate_text`:true setting to avoid stats skew from repeated sections of text in search results.
Closes#23674