The sorting by nested field support has the following parameters on top of the already existing sort options:
nested_path - Defines the on what nested object to sort. The actual sort field must be a direct field inside this nested object. The default is to use the most immediate inherited nested object from the sort field.
nested_filter - A filter the inner objects inside the nested path should match with in order for its field values to be taken into account by sorting. Common case is to repeat the query / filter inside the nested filter or query. By default no nested_filter is active.
Either the highest (max) or lowest (min) inner object is picked for during sorting depending on the sort_mode being used. The sort_mode options avg and sum can still be used for number based fields inside nested objects. All the values for the sort field are taken into account for each nested object.
Closes#2662
SpatialPrefixTree#recursiveGetNodes uses an optimization that prevents
recursion into the deepest tree level if a parent node in the penultimate
level covers all its children. This produces a bug if the optimization
happens both at indexing and at query/filter time.
This patch fixes the bug by disabling the optimization at indexing time
(to avoid adding overhead for query-heavy workloads).
See LUCENE-4770 for reference
the main goal of the facet refactoring is to allow for two modes of facet execution, collector based, that get callbacks as hist match, and post based, which iterates over all the relevant hits
it also includes a some simplification of the facet implementation
The `min` and `max` sort modes are supported for all field types. Either the lowest value or the highest value is picked. In addition to that number based fields also support `sum` and `avg` as sort mode. If `sum` sort mode is used then all the values for a field and belonging to a document are added together and the result of that is used as sort value. If the `avg` sort mode is used then the average of all values for the sort field belonging to that document is used as sort value.
Relates to #2634
The rescore feature allows te rescore a document returned by a query based
on a secondary algorithm. Rescoring is commonly used if a scoring algorithm
is too costly to be executed across the entire document set but efficient enough
to be executed on the Top-K documents scored by a faster retrieval method. Rescoring
can help to improve precision by reordering a larger Top-K window than actually
returned to the user. Typically is it executed on a window between 100 and 500 documents
while the actual result window requested by the user remains the same.
# Query Rescorer
The `query` rescorer executes a secondary query only on the Top-K results of the actual
user query and rescores the documents based on a linear combination of the user query's score
and the score of the `rescore_query`. This allows to execute any exposed query as a
`rescore_query` and supports a `query_weight` as well as a `rescore_query_weight` to weight the
factors of the linear combination.
# Rescore API
The `rescore` request is defined along side the query part in the json request:
```json
curl -s -XPOST 'localhost:9200/_search' -d {
"query" : {
"match" : {
"field1" : {
"query" : "the quick brown",
"type" : "boolean",
"operator" : "OR"
}
}
},
"rescore" : {
"window_size" : 50,
"query" : {
"rescore_query" : {
"match" : {
"field1" : {
"query" : "the quick brown",
"type" : "phrase",
"slop" : 2
}
}
},
"query_weight" : 0.7,
"rescore_query_weight" : 1.2
}
}
}
```
Each `rescore` request is executed on a per-shard basis within the same roundtrip. Currently the rescore API
has only one implementation (the `query` rescorer) which modifies the result set in-place. Future developments
could include dedicated rescore results if needed by the implemenation ie. a pair-wise reranker.
*Note:* Only regualr queries are rescored, if the search type is set to `scan` or `count` rescorers are not executed.
Closes#2640
Stats, histogram and range facets and sorting currently fail if a field that they are running on is not defined in the mapping. In case of dynamic fields it might mean that by the time the facet query is executed the new field mapping might not be propagated to all nodes yet.
When startNode exits there is no guarantee that shard cleanup is finished because the cleanup operation is performed on another thread and startNode doesn't wait for it to complete. Therefore we might need to wait for the shard to disappear.
we want to support ~ notion in query parser for types other than strings, we are getting there, one can do now age:10~5, we would love to support it for dates, as in timestamp:2012-10-10~5d, but that requires changes in the query parser to support strings after the ~ sign
# Suggest feature
The suggest feature suggests similar looking terms based on a provided text by using a suggester. At the moment there the only supported suggester is `fuzzy`. The suggest feature is available from version `0.21.0`.
# Fuzzy suggester
The `fuzzy` suggester suggests terms based on edit distance. The provided suggest text is analyzed before terms are suggested. The suggested terms are provided per analyzed suggest text token. The `fuzzy` suggester doesn't take the query into account that is part of request.
# Suggest API
The suggest request part is defined along side the query part as top field in the json request.
```
curl -s -XPOST 'localhost:9200/_search' -d '{
"query" : {
...
},
"suggest" : {
...
}
}'
```
Several suggestions can be specified per request. Each suggestion is identified with an arbitary name. In the example below two suggestions are requested. Both `my-suggest-1` and `my-suggest-2` suggestions use the `fuzzy` suggester, but have a different `text`.
```
"suggest" : {
"my-suggest-1" : {
"text" : "the amsterdma meetpu",
"fuzzy" : {
"field" : "body"
}
},
"my-suggest-2" : {
"text" : "the rottredam meetpu",
"fuzzy" : {
"field" : "title",
}
}
}
```
The below suggest response example includes the suggestion response for `my-suggest-1` and `my-suggest-2`. Each suggestion part contains entries. Each entry is effectively a token from the suggest text and contains the suggestion entry text, the original start offset and length in the suggest text and if found an arbitary number of options.
```
{
...
"suggest": {
"my-suggest-1": [
{
"text" : "amsterdma",
"offset": 4,
"length": 9,
"options": [
...
]
},
...
],
"my-suggest-2" : [
...
]
}
...
}
```
Each options array contains a option object that includes the suggested text, its document frequency and score compared to the suggest entry text. The meaning of the score depends on the used suggester. The fuzzy suggester's score is based on the edit distance.
```
"options": [
{
"text": "amsterdam",
"freq": 77,
"score": 0.8888889
},
...
]
```
# Global suggest text
To avoid repitition of the suggest text, it is possible to define a global text. In the example below the suggest text is defined globally and applies to the `my-suggest-1` and `my-suggest-2` suggestions.
```
"suggest" : {
"text" : "the amsterdma meetpu"
"my-suggest-1" : {
"fuzzy" : {
"field" : "title"
}
},
"my-suggest-2" : {
"fuzzy" : {
"field" : "body"
}
}
}
```
The suggest text can in the above example also be specied as suggestion specific option. The suggest text specified on suggestion level override the suggest text on the global level.
# Other suggest example.
In the below example we request suggestions for the following suggest text: `devloping distibutd saerch engies` on the `title` field with a maximum of 3 suggestions per term inside the suggest text. Note that in this example we use the `count` search type. This isn't required, but a nice optimalization. The suggestions are gather in the `query` phase and in the case that we only care about suggestions (so no hits) we don't need to execute the `fetch` phase.
```
curl -s -XPOST 'localhost:9200/_search?search_type=count' -d '{
"suggest" : {
"my-title-suggestions-1" : {
"text" : "devloping distibutd saerch engies",
"fuzzy" : {
"size" : 3,
"field" : "title"
}
}
}
}'
```
The above request could yield the response as stated in the code example below. As you can see if we take the first suggested options of each suggestion entry we get `developing distributed search engines` as result.
```
{
...
"suggest": {
"my-title-suggestions-1": [
{
"text": "devloping",
"offset": 0,
"length": 9,
"options": [
{
"text": "developing",
"freq": 77,
"score": 0.8888889
},
{
"text": "deloping",
"freq": 1,
"score": 0.875
},
{
"text": "deploying",
"freq": 2,
"score": 0.7777778
}
]
},
{
"text": "distibutd",
"offset": 10,
"length": 9,
"options": [
{
"text": "distributed",
"freq": 217,
"score": 0.7777778
},
{
"text": "disributed",
"freq": 1,
"score": 0.7777778
},
{
"text": "distribute",
"freq": 1,
"score": 0.7777778
}
]
},
{
"text": "saerch",
"offset": 20,
"length": 6,
"options": [
{
"text": "search",
"freq": 1038,
"score": 0.8333333
},
{
"text": "smerch",
"freq": 3,
"score": 0.8333333
},
{
"text": "serch",
"freq": 2,
"score": 0.8
}
]
},
{
"text": "engies",
"offset": 27,
"length": 6,
"options": [
{
"text": "engines",
"freq": 568,
"score": 0.8333333
},
{
"text": "engles",
"freq": 3,
"score": 0.8333333
},
{
"text": "eggies",
"freq": 1,
"score": 0.8333333
}
]
}
]
}
...
}
```
# Common suggest options:
* `text` - The suggest text. The suggest text is a required option that needs to be set globally or per suggestion.
# Common fuzzy suggest options
* `field` - The field to fetch the candidate suggestions from. This is an required option that either needs to be set globally or per suggestion.
* `analyzer` - The analyzer to analyse the suggest text with. Defaults to the search analyzer of the suggest field.
* `size` - The maximum corrections to be returned per suggest text token.
* `sort` - Defines how suggestions should be sorted per suggest text term. Two possible value:
** `score` - Sort by sore first, then document frequency and then the term itself.
** `frequency` - Sort by document frequency first, then simlarity score and then the term itself.
* `suggest_mode` - The suggest mode controls what suggestions are included or controls for what suggest text terms, suggestions should be suggested. Three possible values can be specified:
** `missing` - Only suggest terms in the suggest text that aren't in the index. This is the default.
** `popular` - Only suggest suggestions that occur in more docs then the original suggest text term.
** `always` - Suggest any matching suggestions based on terms in the suggest text.
# Other fuzzy suggest options:
* `lowercase_terms` - Lower cases the suggest text terms after text analyzation.
* `max_edits` - The maximum edit distance candidate suggestions can have in order to be considered as a suggestion. Can only be a value between 1 and 2. Any other value result in an bad request error being thrown. Defaults to 2.
* `min_prefix` - The number of minimal prefix characters that must match in order be a candidate suggestions. Defaults to 1. Increasing this number improves spellcheck performance. Usually misspellings don't occur in the beginning of terms.
* `min_query_length` - The minimum length a suggest text term must have in order to be included. Defaults to 4.
* `shard_size` - Sets the maximum number of suggestions to be retrieved from each individual shard. During the reduce phase only the top N suggestions are returned based on the `size` option. Defaults to the `size` option. Setting this to a value higher than the `size` can be useful in order to get a more accurate document frequency for spelling corrections at the cost of performance. Due to the fact that terms are partitioned amongst shards, the shard level document frequencies of spelling corrections may not be precise. Increasing this will make these document frequencies more precise.
* `max_inspections` - A factor that is used to multiply with the `shards_size` in order to inspect more candidate spell corrections on the shard level. Can improve accuracy at the cost of performance. Defaults to 5.
* `threshold_frequency` - The minimal threshold in number of documents a suggestion should appear in. This can be specified as an absolute number or as a relative percentage of number of documents. This can improve quality by only suggesting high frequency terms. Defaults to 0f and is not enabled. If a value higher than 1 is specified then the number cannot be fractional. The shard level document frequencies are used for this option.
* `max_query_frequency` - The maximum threshold in number of documents a sugges text token can exist in order to be included. Can be a relative percentage number (e.g 0.4) or an absolute number to represent document frequencies. If an value higher than 1 is specified then fractional can not be specified. Defaults to 0.01f. This can be used to exclude high frequency terms from being spellchecked. High frequency terms are usually spelled correctly on top of this this also improves the spellcheck performance. The shard level document frequencies are used for this option.
# Suggest feature
The suggest feature suggests similar looking terms based on a provided text by using a suggester. At the moment there the only supported suggester is `fuzzy`. The suggest feature is available since version `0.21.0`.
# Fuzzy suggester
The `fuzzy` suggester suggests terms based on edit distance. The provided suggest text is analyzed before terms are suggested. The suggested terms are provided per analyzed suggest text token. The `fuzzy` suggester doesn't take the query into account that is part of request.
# Suggest API
The suggest request part is defined along side the query part as top field in the json request.
```
curl -s -XPOST 'localhost:9200/_search' -d '{
"query" : {
...
},
"suggest" : {
...
}
}'
```
Several suggestions can be specified per request. Each suggestion is identified with an arbitary name. In the example below two suggestions are requested. The `my-suggest-1` suggestion uses the `body` field and `my-suggest-2` uses the `title` field. The `type` field is a required field and defines what suggester to use for a suggestion.
```
"suggest" : {
"suggestions" : {
"my-suggest-1" : {
"type" : "fuzzy",
"field" : "body",
"text" : "the amsterdma meetpu"
},
"my-suggest-2" : {
"type" : "fuzzy",
"field" : "title",
"text" : "the rottredam meetpu"
}
}
}
```
The below suggest response example includes the suggestions part for `my-suggest-1` and `my-suggest-2`. Each suggestion part contains a terms array, that contains all terms outputted by the analyzed suggest text. Each term object includes the term itself, the original start and end offset in the suggest text and if found an arbitary number of suggestions.
```
{
...
"suggest": {
"my-suggest-1": {
"terms" : [
{
"term" : "amsterdma",
"start_offset": 5,
"end_offset": 14,
"suggestions": [
...
]
}
...
]
},
"my-suggest-2" : {
"terms" : [
...
]
}
}
```
Each suggestions array contains a suggestion object that includes the suggested term, its document frequency and score compared to the suggest text term. The meaning of the score depends on the used suggester. The fuzzy suggester's score is based on the edit distance.
```
"suggestions": [
{
"term": "amsterdam",
"frequency": 77,
"score": 0.8888889
},
...
]
```
# Global suggest text
To avoid repitition of the suggest text, it is possible to define a global text. In the example below the suggest text is a global option and applies to the `my-suggest-1` and `my-suggest-2` suggestions.
```
"suggest" : {
"suggestions" : {
"text" : "the amsterdma meetpu",
"my-suggest-1" : {
"type" : "fuzzy",
"field" : "title"
},
"my-suggest-2" : {
"type" : "fuzzy",
"field" : "body"
}
}
}
```
The suggest text can be specied as global option or as suggestion specific option. The suggest text specified on suggestion level override the suggest text on the global level.
# Other suggest example.
In the below example we request suggestions for the following suggest text: `devloping distibutd saerch engies` on the `title` field with a maximum of 3 suggestions per term inside the suggest text. Note that in this example we use the `count` search type. This isn't required, but a nice optimalization. The suggestions are gather in the `query` phase and in the case that we only care about suggestions (so no hits) we don't need to execute the `fetch` phase.
```
curl -s -XPOST 'localhost:9200/_search?search_type=count' -d '{
"suggest" : {
"suggestions" : {
"my-title-suggestions" : {
"suggester" : "fuzzy",
"field" : "title",
"text" : "devloping distibutd saerch engies",
"size" : 3
}
}
}
}'
```
The above request could yield the response as stated in the code example below. As you can see if we take the first suggested term of each suggest text term we get `developing distributed search engines` as result.
```
{
...
"suggest": {
"my-title-suggestions": {
"terms": [
{
"term": "devloping",
"start_offset": 0,
"end_offset": 9,
"suggestions": [
{
"term": "developing",
"frequency": 77,
"score": 0.8888889
},
{
"term": "deloping",
"frequency": 1,
"score": 0.875
},
{
"term": "deploying",
"frequency": 2,
"score": 0.7777778
}
]
},
{
"term": "distibutd",
"start_offset": 10,
"end_offset": 19,
"suggestions": [
{
"term": "distributed",
"frequency": 217,
"score": 0.7777778
},
{
"term": "disributed",
"frequency": 1,
"score": 0.7777778
},
{
"term": "distribute",
"frequency": 1,
"score": 0.7777778
}
]
},
{
"term": "saerch",
"start_offset": 20,
"end_offset": 26,
"suggestions": [
{
"term": "search",
"frequency": 1038,
"score": 0.8333333
},
{
"term": "smerch",
"frequency": 3,
"score": 0.8333333
},
{
"term": "serch",
"frequency": 2,
"score": 0.8
}
]
},
{
"term": "engies",
"start_offset": 27,
"end_offset": 33,
"suggestions": [
{
"term": "engines",
"frequency": 568,
"score": 0.8333333
},
{
"term": "engles",
"frequency": 3,
"score": 0.8333333
},
{
"term": "eggies",
"frequency": 1,
"score": 0.8333333
}
]
}
]
}
}
...
}
```
# Common suggest options:
* `suggester` - The suggester implementation type. The only supported value is 'fuzzy'. This is a required option.
* `text` - The suggest text. The suggest text is a required option that needs to be set globally or per suggestion.
# Common fuzzy suggest options
* `field` - The field to fetch the candidate suggestions from. This is an required option that either needs to be set globally or per suggestion.
* `analyzer` - The analyzer to analyse the suggest text with. Defaults to the search analyzer of the suggest field.
* `size` - The maximum corrections to be returned per suggest text token.
* `sort` - Defines how suggestions should be sorted per suggest text term. Two possible value:
** `score` - Sort by sore first, then document frequency and then the term itself.
** `frequency` - Sort by document frequency first, then simlarity score and then the term itself.
* `suggest_mode` - The suggest mode controls what suggestions are included or controls for what suggest text terms, suggestions should be suggested. Three possible values can be specified:
** `missing` - Only suggest terms in the suggest text that aren't in the index. This is the default.
** `popular` - Only suggest suggestions that occur in more docs then the original suggest text term.
** `always` - Suggest any matching suggestions based on terms in the suggest text.
# Other fuzzy suggest options:
* `lowercase_terms` - Lower cases the suggest text terms after text analyzation.
* `max_edits` - The maximum edit distance candidate suggestions can have in order to be considered as a suggestion. Can only be a value between 1 and 2. Any other value result in an bad request error being thrown. Defaults to 2.
* `min_prefix` - The number of minimal prefix characters that must match in order be a candidate suggestions. Defaults to 1. Increasing this number improves spellcheck performance. Usually misspellings don't occur in the beginning of terms.
* `min_query_length` - The minimum length a suggest text term must have in order to be included. Defaults to 4.
* `shard_size` - Sets the maximum number of suggestions to be retrieved from each individual shard. During the reduce phase only the top N suggestions are returned based on the `size` option. Defaults to the `size` option. Setting this to a value higher than the `size` can be useful in order to get a more accurate document frequency for spelling corrections at the cost of performance. Due to the fact that terms are partitioned amongst shards, the shard level document frequencies of spelling corrections may not be precise. Increasing this will make these document frequencies more precise.
* `max_inspections` - A factor that is used to multiply with the `shards_size` in order to inspect more candidate spell corrections on the shard level. Can improve accuracy at the cost of performance. Defaults to 5.
* `threshold_frequency` - The minimal threshold in number of documents a suggestion should appear in. This can be specified as an absolute number or as a relative percentage of number of documents. This can improve quality by only suggesting high frequency terms. Defaults to 0f and is not enabled. If a value higher than 1 is specified then the number cannot be fractional. The shard level document frequencies are used for this option.
* `max_query_frequency` - The maximum threshold in number of documents a sugges text token can exist in order to be included. Can be a relative percentage number (e.g 0.4) or an absolute number to represent document frequencies. If an value higher than 1 is specified then fractional can not be specified. Defaults to 0.01f. This can be used to exclude high frequency terms from being spellchecked. High frequency terms are usually spelled correctly on top of this this also improves the spellcheck performance. The shard level document frequencies are used for this option.
Closes#2585
* added configurable MemoryIndexPool that pools MemoryIndex instance across Threads
* Pool can be configured based on the number of pooled instances as well as the maximum number of bytes that is reused across the pooled instances
Closes#2581
* Removed CustmoMemoryIndex in favor of MemoryIndex which as of 4.1 supports adding the same field twice
* Replaced duplicated logic in X[*]FSDirectory for rate limiting with a RateLimitedFSDirectory wrapper
* Remove hacks to find out merge context in rate limiting in favor of IOContext
* replaced Scorer#freq() return type (from float to int)
* Upgraded FVHighlighter to new 'centered' highlighting
* Fixed RobinEngine to use seperate setCommitData
* Default ShardsAllocator is set to BalancedShardsAllocator
* Core ShardsAllocator implementations can be defined via 'cluster.routing.allocation.type'
* Core ShardsAllocator implementations are exposed via short keys 'balanced' (BalancedShardsAllocator) and 'even_shards' (EvenShardsCountAllocator)
* Third party allocators can be loaded via fully-qualified class names.
Closes#2557
* Weights are calculated per index and incorporate index level, global and primary related parameters
* Balance operations are executed based on a win maximation strategy that tries to relocate shards
first that offer the biggest gain towards the weight functions optimum
* The WeightFunction allows settings to prefer index based balance over global balance and vice versa
* Balance operations can be throttled by raising a threshold resulting in less agressive balance operations
* WeightFunction shipps with defaults to achive evenly distributed indexes while maintaining a global balance
Closes#2555
checked jackson, there won't be an overhead in enabling comments. Added, with the caveat that when used with mappings, and calling "get mapping", the comments will not be returned
closes#1394
we need to in order to properly handle bytes, and normalize Integer to Long for example for consistency, the fact that mappers now handle different Objtes help here
Closes: #646
- Introduced HunspellService which holds a repository of hunspell dictionaries
- It is possible to register a dictionary via a plugin or by placing the dictionary files on the file system
Added score support to `has_child` and `has_parent` queries. Both queries support a score_type option. The has_child support the same options as the top_children query and the none option which is the default and yields the current behaviour. The has_parent query support the score type options: score and none. The latter is the default and yields the current behaviour.
If the score_type is set to a value other than none then the has_parent query map the matched parent score into the related children documents. The has_child query then map the matched children documents into the related parent document. The score_type on both queries defines how the children documents scores are mapped in the parent documents. Both queries are executed in two phases. First phase collects the parent uid values of matching documents with an aggregated score per parent uid value. In the second phase either child or parent typed documents are emitted as hit that have the same parent uid value as found during the first phase. The score computed in the first phase will be used as score.
Closes#2502
since we add them internally to the compound mappers, we need to publish the fact, otherwise, for example, the codec won't find the relevant one based on the global mapper service
Fixed error with the top_children query when `DFS_QUERY_*` is used as search_type and wraps a query that gets rewritten (E.g wildcard query).
Closes#2501
If the a routing value isn't id based, the get part of the mlt request couldn't retrieve the document for the second part of the mlt request and a 500 code is returned instead. This fix addresses this issue.
Closes#2489
- Added "regexp" query type (based on Lucene 4 RegexpQuery)
- Added "regexp" filter type
- Fixed a bug in IdFieldMapper where prefixQuery on a single type would be redundantly wrapped in a boolean query