This PR adds factory methods for the most common implementations:
* `SourceValueFetcher.identity` to pass through the source value untouched.
* `SourceValueFetcher.toString` to simply convert the source value to a string.
When constructing a value fetcher, the 'parsesArrayValue' flag must match
`FieldMapper#parsesArrayValue`. However there is nothing in code or tests to
help enforce this.
This PR reworks the value fetcher constructors so that `parsesArrayValue` is
'false' by default. Just as for `FieldMapper#parsesArrayValue`, field types must
explicitly set it to true and ensure the behavior is covered by tests.
Follow-up to #62974.
MapperService carries a lot of weight and is only used to determine if loading of field data for the id field is enabled, which can be done in a different way.
In #62509 we already plugged faster sequential access for stored fields in the fetch phase.
This PR now adds using the potentially better field reader also in SourceLookup.
Rally exeriments are showing that this speeds up e.g. when runtime fields that are using
"_source" are added e.g. via "docvalue_fields" or are used in queries or aggs.
Closes#62621
For runtime fields, we will want to do all search-time interaction with
a field definition via a MappedFieldType, rather than a FieldMapper, to
avoid interfering with the logic of document parsing. Currently, fetching
values for runtime scripts and for building top hits responses need to
call a method on FieldMapper. This commit moves this method to
MappedFieldType, incidentally simplifying the current call sites and freeing
us up to implement runtime fields as pure MappedFieldType objects.
Most of our field types have the same implementation for their `existsQuery` method which relies on doc_values if present, otherwise it queries norms if available or uses a term query against the _field_names meta field. This standard implementation is repeated in many different mappers.
There are field types that only query doc_values, because they always have them, and field types that always query _field_names, because they never have norms nor doc_values. We could apply the same standard logic to all of these field types as `MappedFieldType` has the knowledge about what data structures are available.
This commit introduces a standard implementation that does the right thing depending on the data structure that is available. With that only field types that require a different behaviour need to override the existsQuery method.
At the same time, this no longer forces subclasses to override `existsQuery`, which could be forgotten when needed. To address this we introduced a new test method in `MapperTestCase` that verifies the `existsQuery` being generated and its consistency with the available data structures.
FetchSubPhase#getProcessor currently takes a SearchLookup parameter. This
however is only needed by a couple of subphases, and will almost certainly change in
future as we want to simplify how fetch phases retrieve values for individual hits.
To future-proof against further signature changes, this commit moves the SearchLookup
reference into FetchContext instead.
We currently pass a SearchContext around to share configuration among
FetchSubPhases. With the introduction of runtime fields, it would be useful
to start storing some state on this context to be shared between different
subphases (for example, stored fields or search lookups can be loaded lazily
but referred to by many different subphases). However, SearchContext is a
very large and unwieldy class, and adding more methods or state here feels
like a bridge too far.
This commit introduces a new FetchContext class that exposes only those
methods on SearchContext that are required for fetch phases. This reduces
the API surface area for fetch phases considerably, and should give us some
leeway to add further state.
This implements the `fields` API in `_search` for runtime fields using
doc values. Most of that implementation is stolen from the
`docvalue_fields` fetch sub-phase, just moved into the same API that the
`fields` API uses. At this point the `docvalue_fields` fetch phase looks
like a special case of the `fields` API.
While I was at it I moved the "which doc values sub-implementation
should I use for fetching?" question from a bunch of `instanceof`s to a
method on `LeafFieldData` so we can be much more flexible with what is
returned and we're not forced to extend certain classes just to make the
fetch phase happy.
Relates to #59332
FastVectorHighlighter uses the top-level reader to rewrite queries against, which
it gets via an IndexSearcher field on HitContext. However, we can already access
this top-level reader via HitContext's existing LeafReaderContext field.
This commit removes the unnecessary field and constructor parameter, and
changes the implementation of topLevelReader to go via ReaderUtils and
the leaf reader context.
This also adds the ability to define a serialization check on Parameters, used
in this case to only serialize format and locale parameters if the mapper is a
date range.
FetchSubPhase has two 'execute' methods, one which takes all hits to be examined,
and one which takes a single HitContext. It's not obvious which one should be implemented
by a given sub-phase, or if implementing both is a possibility; nor is it obvious that we first
run the hitExecute methods of all subphases, and then subsequently call all the
hitsExecute methods.
This commit reworks FetchSubPhase to replace these two variants with a processor class,
`FetchSubPhaseProcessor`, that is returned from a single `getProcessor` method. This
processor class has two methods, `setNextReader()` and `process`. FetchPhase collects
processors from all its subphases (if a subphase does not need to execute on the current
search context, it can return `null` from `getProcessor`). It then sorts its hits by docid, and
groups them by lucene leaf reader. For each reader group, it calls `setNextReader()` on
all non-null processors, and then passes each doc id to `process()`.
Implementations of fetch sub phases can divide their concerns into per-request, per-reader
and per-document sections, and no longer need to worry about sorting docs or dealing with
reader slices.
FetchSubPhase now provides a FetchSubPhaseExecutor that exposes two methods,
setNextReader(LeafReaderContext) and execute(HitContext). The parent FetchPhase collects all
these executors together (if a phase should not be executed, then it returns null here); then
it sorts hits, and groups them by reader; for each reader it calls setNextReader, and then
execute for each hit in turn. Individual sub phases no longer need to concern themselves with
sorting docs or keeping track of readers; global structures can be built in
getExecutor(SearchContext), per-reader structures in setNextReader and per-doc in execute.
Runtime fields need to have a SearchLookup available, when building their fielddata implementations, so that they can look up other fields, runtime or not.
To achieve that, we add a Supplier<SearchLookup> argument to the existing MappedFieldType#fielddataBuilder method.
As we introduce the ability to look up other fields while building fielddata for mapped fields, we implicitly add the ability for a field to require other fields. This requires some protection mechanism that detects dependency cycles to prevent stack overflow errors.
With this commit we also introduce detection for cycles, as well as a limit on the depth of the references for a runtime field. Note that we also plan on introducing cycles detection at compile time, so the runtime cycles detection is a last resort to prevent stack overflow errors but we hope that we can reject runtime fields from being registered in the mappings when they create a cycle in their definition.
Note that this commit does not introduce any production implementation of runtime fields, but is rather a pre-requisite to merge the runtime fields feature branch.
This is a breaking change for MapperPlugins that plug in a mapper, as the signature of MappedFieldType#fielddataBuilder changes from taking a single argument (the index name), to also accept a Supplier<SearchLookup>.
Relates to #59332
Co-authored-by: Nik Everett <nik9000@gmail.com>
DeprecationLogger's constructor should not create two loggers. It was
taking parent logger instance, changing its name with a .deprecation
prefix and creating a new logger.
Most of the time parent logger was not needed. It was causing Log4j to
unnecessarily cache the unused parent logger instance.
depends on #61515
backports #58435
Splitting DeprecationLogger into two. HeaderWarningLogger - responsible for adding a response warning headers and ThrottlingLogger - responsible for limiting the duplicated log entries for the same key (previously deprecateAndMaybeLog).
Introducing A ThrottlingAndHeaderWarningLogger which is a base for other common logging usages where both response warning header and logging throttling was needed.
relates #55699
relates #52369
backports #55941
Before when a value was copied to a field through a parent field or `copy_to`,
we parsed it using the `FieldMapper` from the source field. Instead we should
parse it using the target `FieldMapper`. This ensures that we apply the
appropriate mapping type and options to the copied value.
To implement the fix cleanly, this PR refactors the value parsing strategy. Now
instead of looking up values directly, field mappers produce a helper object
`ValueFetcher`. The value fetchers are responsible for almost all aspects of
fetching, including looking up the right paths in the _source.
The PR is fairly big but each commit can be reviewed individually.
Fixes#61033.
In addition, this commit converts ScaledFloatFieldMapper as it was relying
on a number of static values taken from NumberFieldMapper that had changed
or been removed.
This makes KeywordFieldMapper extend ParametrizedFieldMapper, with explicitly
defined parameters.
In addition, we add a new option to Parameter, restrictedStringParam, which
accepts a restricted set of string options.
The `SourceLookup` class provides access to the _source for a particular
document, specified through `SourceLookup#setSegmentAndDocument`. Previously
the search context contained a single `SourceLookup` that was shared between
different fetch subphases. It was hard to reason about its state: is
`SourceLookup` set to the expected document? Is the _source already loaded and
available?
Instead of using a global source lookup, the fetch hit context now provides
access to a lookup that is set to load from the hit document.
This refactor closes#31000, since the same `SourceLookup` is no longer shared
between the 'fetch _source phase' and script execution.
This feature adds a new `fields` parameter to the search request, which
consults both the document `_source` and the mappings to fetch fields in a
consistent way. The PR merges the `field-retrieval` feature branch.
Addresses #49028 and #55363.
Introduce a javaRestTest source set and task to compliment the yamlRestTest.
javaRestTest differs such that the code is sourced from Java and may have
different dependencies and setup requirements for the test clusters. This also
allows the tests to run in parallel in different cluster instances to prevent any
cross test contamination between the two types of tests.
Included in this PR is all :modules no longer use the integTest task. The tests
are now driven by test, yamlRestTest, javaRestTest, and internalClusterTest.
Since only :modules (and :rest-api-spec) have been converted to yamlRestTest
we can now disable the integTest task if either yamlRestTest or javaRestTest have
been applied. Once all projects are converted, we can delete the integTest task.
related: #56841
related: #59444
We never used the `IndexSettings` parameter and we only used the
`MappedFieldType` parameter to get the name of the field which we
already know everywhere where we build the `IFD.Builder`. This allows us
to drop a fair bit of ceremony from a couple of tests.
This commit moves the modules REST tests to the
newly introduced yamlRestTest source set. A few
tests have also been re-named to include the correct
IT suffix. Without changing the names, the testing
conventions task would fail since now that the YAML
tests are no longer present pacify the convention.
These tests have moved to the internalClusterTest
source set.
related: #56841
With the removal of mapping types and the immutability of FieldTypeLookup in #58162, we no longer
have any cause to compare MappedFieldType instances. This means that we can remove all equals
and hashCode implementations, and in addition we no longer need the clone implementations which
were required for equals/hashcode testing. This greatly simplifies implementing new MappedFieldTypes,
which will be particularly useful for the runtime fields project.
The FieldMapper infrastructure currently has a bunch of shared parameters, many of which
are only applicable to a subset of the 41 mapper implementations we ship with. Merging,
parsing and serialization of these parameters are spread around the class hierarchy, with
much repetitive boilerplate code required. It would be much easier to reason about these
things if we could declare the parameter set of each FieldMapper directly in the implementing
class, and share the parsing, merging and serialization logic instead.
This commit is a first effort at introducing a declarative parameter style. It adds a new FieldMapper
subclass, ParametrizedFieldMapper, and refactors two mappers, Boolean and Binary, to use it.
Parameters are declared on Builder classes, with the declaration including the parameter name,
whether or not it is updateable, a default value, how to parse it from mappings, and how to
extract it from another mapper at merge time. Builders have a getParameters method, which
returns a list of the declared parameters; this is then used for parsing, merging and serialization.
Merging is achieved by constructing a new Builder from the existing Mapper, and merging in
values from the merging Mapper; conflicts are all caught at this point, and if none exist then a new,
merged, Mapper can be built from the Builder. This allows all values on the Mapper to be final.
Other mappers can be gradually migrated to this new style, and once they have all been refactored
we can merge ParametrizedFieldMapper and FieldMapper entirely.
The refactoring in #57666 inadvertently enabled norms on two of the percolator subfields,
leading to an increase in memory usage. This commit disables norms on these fields again.
Now that MappedFieldType no longer extends lucene's FieldType, we need to have a
way of getting the index information about a field necessary for building text queries,
building term vectors, highlighting, etc. This commit introduces a new TextSearchInfo
abstraction that holds this information, and a getTextSearchInfo() method to
MappedFieldType to make it available. Field types that do not support text search can
just return null here.
This allows us to remove the MapperService.getLuceneFieldType() shim method.
This is currently used to set the indexVersionCreated parameter on FieldMapper.
However, this parameter is only actually used by two implementations, and clutters
the API considerably. We should just remove it, and use it directly in the
implementations that require it.
MappedFieldType is a combination of two concerns:
* an extension of lucene's FieldType, defining how a field should be indexed
* a set of query factory methods, defining how a field should be searched
We want to break these two concerns apart. This commit is a first step to doing this, breaking
the inheritance relationship between MappedFieldType and FieldType. MappedFieldType
instead has a series of boolean flags defining whether or not the field is searchable or
aggregatable, and FieldMapper has a separate FieldType passed to its constructor defining
how indexing should be done.
Relates to #56814
Before to determine if a field is meta-field, a static method of MapperService
isMetadataField was used. This method was using an outdated static list
of meta-fields.
This PR instead changes this method to the instance method that
is also aware of meta-fields in all registered plugins.
Related #38373, #41656Closes#24422
When we had multiple mapping types, an update to a field in one type had to be
propagated to the same field in all other types. This was done using the
Mapper.updateFieldType() method, called at the end of a merge. However, now
that we only have a single type per index, this method is unnecessary and can
be removed.
Relates to #41059
Backport of #56986
Merging logic is currently split between FieldMapper, with its merge() method, and
MappedFieldType, which checks for merging compatibility. The compatibility checks
are called from a third class, MappingMergeValidator. This makes it difficult to reason
about what is or is not compatible in updates, and even what is in fact updateable - we
have a number of tests that check compatibility on changes in mapping configuration
that are not in fact possible.
This commit refactors the compatibility logic so that it all sits on FieldMapper, and
makes it called at merge time. It adds a new FieldMapperTestCase base class that
FieldMapper tests can extend, and moves the compatibility testing machinery from
FieldTypeTestCase to here.
Relates to #56814
Mapper.Builder currently has some complex generics on it to allow fluent builder
construction. However, the second parameter, a return type from the build() method,
is unnecessary, as we can use covariant return types. This commit removes this second
generic parameter.
This PR proposes to use `IndexSortSortedNumericDocValuesRangeQuery` when
possible to speed up certain range queries. Points-based queries are already
very efficient, the only time this query makes a difference is when the range
matches a large number of documents.
Relates to #48665.
`FieldMapper#parseCreateField` accepts the parse context, plus a list of fields
as an output parameter. These fields are immediately added to the document
through `ParseContext#doc()`.
This commit simplifies the signature by removing the list of fields, and having
the mappers add the fields directly to `ParseContext#doc()`. I think this is
nicer for implementors, because previously fields could be added either through
the list, or the context (through `add`, `addWithKey`, etc.)
This commit introduces a new `geo` module that is intended
to be contain all the geo-spatial-specific features in server.
As a first step, the responsibility of registering the geo_shape
field mapper is moved to this module.
Co-authored-by: Nicholas Knize <nknize@gmail.com>
Some field name constants were not updaten when we moved from "string" to "text"
and "keyword" fields. Renaming them makes it easier and faster to know which
field type is used in test subclassing this base test case.
Refactor SearchHit to have separate document and meta fields.
This is a part of bigger refactoring of issue #24422 to remove
dependency on MapperService to check if a field is metafield.
Relates to PR: #38373
Relates to issue #24422
Co-authored-by: sandmannn <bohdanpukalskyi@gmail.com>
This is a simple naming change PR, to fix the fact that "metadata" is a
single English word, and for too long we have not followed general
naming conventions for it. We are also not consistent about it, for
example, METADATA instead of META_DATA if we were trying to be
consistent with MetaData (although METADATA is correct when considered
in the context of "metadata"). This was a simple find and replace across
the code base, only taking a few minutes to fix this naming issue
forever.
The highlighting phase for percolator queries currently uses some custom query
traversal logic to find all instances of PercolatorQuery in the query tree for the
current search context. This commit converts things to instead use a QueryVisitor,
which future-proofs us against new wrapper queries or queries from custom
plugins that the percolator module doesn't know about.