This commit actually bounds the size of the generic thread pool. The
generic thread pool was of type cached, a thread pool with an unbounded
number of workers and an unbounded work queue. With this commit, the
generic thread pool is now of type scaling. As such, the cached thread
pool type has been removed. By default, the generic thread pool is
constructed with a core pool size of four, a max pool size of 128 and
idle workers can be reaped after a keep-alive time of thirty seconds
expires. The work queue for this thread pool remains unbounded.
The getting started docs use dynamic mappings. With the recent change to
string split into text and keyword, text lost the default ability to do
aggs. This was added back in #17188. This change updates the getting
started examples to use the keyword multi field added to dynamically
mapped text fields.
closes#17941
Lucene allows to create a ICUTokenizer with a special config argument
enabling the customization of the rule based iterator by providing
custom rules files.
This commit enable this feature. Users could provide a list of RBBI rule
files to ICU tokenizer.
closes#13146
* `rename` processor, renamed `to` to `target_field`
* `date` processor, renamed `match_field` to `field` and renamed `match_formats` to `formats`
* `geoip` processor, renamed `source_field` to `field` and renamed `fields` to `properties`
* `attachment` processor, renamed `source_field` to `field` and renamed `fields` to `properties`
Closes#17835
Adds a `fingerprint` token filter which uses Lucene's FingerprintFilter,
and a `fingerprint` analyzer that combines the Fingerprint filter with
lowercasing, stop word removal and asciifolding.
Closes#13325
In Elasticsearch 5.0.0, by default unquoted field names in JSON will be
rejected. This can cause issues, however, for documents that were
already indexed with unquoted field names. To alleviate this, a system
property has been added that can be enabled so migration can occur.
This system property will be removed in Elasticsearch 6.0.0
Resolves#17674
* Added an extra `field` parameter to the `percolator` query to indicate what percolator field should be used. This must be an existing field in the mapping of type `percolator`.
* The `.percolator` type is now forbidden. (just like any type that starts with a `.`)
This only applies for new indices created on 5.0 and later. Indices created on previous versions the .percolator type is still allowed to exist.
The new `percolator` field type isn't active in such indices and the `PercolatorQueryCache` knows how to load queries from these legacy indices.
The `PercolatorQueryBuilder` will not enforce that the `field` parameter is of type `percolator`.
We advertise in our documentation that byte units are like `kb`, `mb`... But we actually only support the simple notation `k` or `m`.
This commit adds support for the documented form and keeps the non documented options to avoid any breaking change.
It also adds support for `micros`, `nanos` and `d` as a time unit in `_cat` API.
Remove the support for `b` as a SizeValue unit. Actually, for numbers, when using raw numbers without unit, there is no text to add/parse after the number. For example, you don't write `10` as `10b`. We support option like `size=` in `_cat` API which means that we want to display raw data without unit (singles).
Documentation updated accordingly.
Add test for the empty size option.
Fix missing TimeValues options for some cat APIs
This makes all numeric fields including `date`, `ip` and `token_count` use
points instead of the inverted index as a lookup structure. This is expected
to perform worse for exact queries, but faster for range queries. It also
requires less storage.
Notes about how the change works:
- Numeric mappers have been split into a legacy version that is essentially
the current mapper, and a new version that uses points, eg.
LegacyDateFieldMapper and DateFieldMapper.
- Since new and old fields have the same names, the decision about which one
to use is made based on the index creation version.
- If you try to force using a legacy field on a new index or a field that uses
points on an old index, you will get an exception.
- IP addresses now support IPv6 via Lucene's InetAddressPoint and store them
in SORTED_SET doc values using the same encoding (fixed length of 16 bytes
and sortable).
- The internal MappedFieldType that is stored by the new mappers does not have
any of the points-related properties set. Instead, it keeps setting the index
options when parsing the `index` property of mappings and does
`if (fieldType.indexOptions() != IndexOptions.NONE) { // add point field }`
when parsing documents.
Known issues that won't fix:
- You can't use numeric fields in significant terms aggregations anymore since
this requires document frequencies, which points do not record.
- Term queries on numeric fields will now return constant scores instead of
giving better scores to the rare values.
Known issues that we could work around (in follow-up PRs, this one is too large
already):
- Range queries on `ip` addresses only work if both the lower and upper bounds
are inclusive (exclusive bounds are not exposed in Lucene). We could either
decide to implement it, or drop range support entirely and tell users to
query subnets using the CIDR notation instead.
- Since IP addresses now use a different representation for doc values,
aggregations will fail when running a terms aggregation on an ip field on a
list of indices that contains both pre-5.0 and 5.0 indices.
- The ip range aggregation does not work on the new ip field. We need to either
implement range aggs for SORTED_SET doc values or drop support for ip ranges
and tell users to use filters instead. #17700Closes#16751Closes#17007Closes#11513
The change adds a new option to the geo_* queries: ignore_unmapped. If this option is set to false, the toQuery method on the QueryBuilder will throw an exception if the field specified in the query is unmapped. If the option is set to true, the toQuery method on the QueryBuilder will return a MatchNoDocsQuery. The default value is false so the queries work how they do today (throwing an exception on unmapped field)
The change adds a new option to the `nested`, `has_parent`, `has_children` and `parent_id` queries: `ignore_unmapped`. If this option is set to false, the `toQuery` method on the QueryBuilder will throw an exception if the type/path specified in the query is unmapped. If the option is set to true, the `toQuery` method on the QueryBuilder will return a MatchNoDocsQuery. The default value is `false`so the queries work how they do today (throwing an exception on unmapped paths/types)
With this commit we limit the size of all in-flight requests on
transport level. The size is guarded by a circuit breaker and is
based on the content size of each request.
By default we use 100% of available heap meaning that the parent
circuit breaker will limit the maximum available size. This value
can be changed by adjusting the setting
network.breaker.inflight_requests.limit
Relates #16011
This commit adds a new configuration file jvm.options to centralize and
simplify management of JVM options. This separates the configuration of
the JVM from the packaging scripts (bin/elasticsearch*, bin/service.bat,
and init.d/elasticsearch) simplifying end-user operational management of
custom JVM options.
CBOR is natively supported in Elasticsearch and allows for byte arrays.
This means, that by using CBOR the user can prevent base64 conversions
for the data being sent back and forth.
This PR adds support to extract data from a byte array in addition to
a string. This also required to add a ByteArrayValueSource class.
The doc mentions match_path in one place but the correct syntax is path_match which is mentioned everywhere else. Using the wrong string leads to errors because the mapping becomes too greedy, and matches things it shouldn't.
Now the `match` query has been split out into `match`, `match_phrase` and `match_phrase_prefix` we need to update the docs to remove the deprecated syntax
Closes#17513
The current example in the documentation for Index Templates lacks any properties values. This is helpful to many devs that aren't sure how to take a regular Index Mapping and convert it to a template.
IMHO the original text here was incomplete. Adding the simple words 'in the index mapping' makes this sentence more clear. Perhaps a be more clear to make this a link.
* [TEST] check registered queries one by one in SearchModuleTests
* Switch to using ParseField to parse query names
If we have a deprecated query name, at the moment we don't have a way to log any deprecation warning nor fail when we are in strict mode. With this change we use ParseField, which will take care of the camel casing that we currently do manually (so that one day we can remove it more easily). This also means, that each query will have a unique preferred name, and all the other names are deprecated.
Terms query "in" synonym is now formally deprecated, as well as fuzzy_match, match_fuzzy, match_phrase and match_phrase_prefix for match query, mlt for more_like_this and geo_bbox for geo_bounding_box. All these will be removed in 6.0.
Every QueryParser holds now a ParseField constant called QUERY_NAME_FIELD that holds the name for it. The first name is the preferred one, all the others are deprecated. The first name is taken from the NAME constant already present in each query builder object, so that we somehow keep the serialization constant separated from ParseField. This change also allowed us to remove the names method from the QueryParser interface.
apart from locahost typo, the issue is that localhost is not 100% safe
for all distros with IPv6.
For example fedora23 defines localhost4 and localhost6 (among other
aliases) so `curl localhost:9200` doesn't work.
For this reason, I think it's safer to replace localhost with 127.0.0.1
By default, tasks are grouped by node. However, task execution in elasticsearch can be quite complex and an individual task that runs on a coordinating node can have many subtasks running on other nodes in the cluster. This commit makes it possible to list task grouped by common parents instead of by node. When this option is enabled all subtask are grouped under the coordinating node task that started all subtasks in the group. To group tasks by common parents, use the following syntax:
GET /tasks?group_by=parents
This commit adds the new `action.search.shard_count.limit` setting which
configures the maximum number of shards that can be queried in a single search
request. It has a default value of 1000.
Both top level and inline inner hits are now covered by InnerHitBuilder.
Although there are differences between top level and inline inner hits,
they now make use of the same builder logic.
The parsing of top level inner hits slightly changed to be more readable.
Before the nested path or parent/child type had to be specified as encapsuting
json object, now these settings are simple fields. Before this was required
to allow streaming parsing of inner hits without missing contextual information.
Once some issues are fixed with inline inner hits (around multi level hierachy of inner hits),
top level inner hits will be deprecated and removed in the next major version.
Today the basic node settings like `node.data` and `node.master` can't really be fully validated
since we allow to specify custom user attributes on the node level. We have to, in order to
support that, add a wildcard setting for `node.*` to let these setting pass validation.
Instead we should require a more contraint prefix like `node.attr.` that defines a namespace
that is reserved for user attributes.
This commit adds a new namespace for attributes in `node.attr`.
Closes#17280
This is to prevent mapping explosion when dynamic keys such as UUID are used as field names. index.mapping.total_fields.limit specifies the total number of fields an index can have. An exception will be thrown when the limit is reached. The default limit is 1000. Value 0 means no limit. This setting is runtime adjustable
Closes#11443
This adds a new `/_cluster/allocation/explain` API that explains why a
shard can or cannot be allocated to nodes in the cluster. Additionally,
it will show where the master *desires* to put the shard, according to
the `ShardsAllocator`.
It looks like this:
```
GET /_cluster/allocation/explain?pretty
{
"index": "only-foo",
"shard": 0,
"primary": false
}
```
Though, you can optionally send an empty body, which means "explain the
allocation for the first unassigned shard you find".
The output when a shard is unassigned looks like this:
```
{
"shard" : {
"index" : "only-foo",
"index_uuid" : "KnW0-zELRs6PK84l0r38ZA",
"id" : 0,
"primary" : false
},
"assigned" : false,
"unassigned_info" : {
"reason" : "INDEX_CREATED",
"at" : "2016-03-22T20:04:23.620Z"
},
"nodes" : {
"V-Spi0AyRZ6ZvKbaI3691w" : {
"node_name" : "Susan Storm",
"node_attributes" : {
"bar" : "baz"
},
"final_decision" : "NO",
"weight" : 0.06666675,
"decisions" : [ {
"decider" : "filter",
"decision" : "NO",
"explanation" : "node does not match index include filters [foo:\"bar\"]"
} ]
},
"Qc6VL8c5RWaw1qXZ0Rg57g" : {
"node_name" : "Slipstream",
"node_attributes" : {
"bar" : "baz",
"foo" : "bar"
},
"final_decision" : "NO",
"weight" : -1.3833332,
"decisions" : [ {
"decider" : "same_shard",
"decision" : "NO",
"explanation" : "the shard cannot be allocated on the same node id [Qc6VL8c5RWaw1qXZ0Rg57g] on which it already exists"
} ]
},
"PzdyMZGXQdGhqTJHF_hGgA" : {
"node_name" : "The Symbiote",
"node_attributes" : { },
"final_decision" : "NO",
"weight" : 2.3166666,
"decisions" : [ {
"decider" : "filter",
"decision" : "NO",
"explanation" : "node does not match index include filters [foo:\"bar\"]"
} ]
}
}
}
```
And when the shard *is* assigned, the output looks like:
```
{
"shard" : {
"index" : "only-foo",
"index_uuid" : "KnW0-zELRs6PK84l0r38ZA",
"id" : 0,
"primary" : true
},
"assigned" : true,
"assigned_node_id" : "Qc6VL8c5RWaw1qXZ0Rg57g",
"nodes" : {
"V-Spi0AyRZ6ZvKbaI3691w" : {
"node_name" : "Susan Storm",
"node_attributes" : {
"bar" : "baz"
},
"final_decision" : "NO",
"weight" : 1.4499999,
"decisions" : [ {
"decider" : "filter",
"decision" : "NO",
"explanation" : "node does not match index include filters [foo:\"bar\"]"
} ]
},
"Qc6VL8c5RWaw1qXZ0Rg57g" : {
"node_name" : "Slipstream",
"node_attributes" : {
"bar" : "baz",
"foo" : "bar"
},
"final_decision" : "CURRENTLY_ASSIGNED",
"weight" : 0.0,
"decisions" : [ {
"decider" : "same_shard",
"decision" : "NO",
"explanation" : "the shard cannot be allocated on the same node id [Qc6VL8c5RWaw1qXZ0Rg57g] on which it already exists"
} ]
},
"PzdyMZGXQdGhqTJHF_hGgA" : {
"node_name" : "The Symbiote",
"node_attributes" : { },
"final_decision" : "NO",
"weight" : 3.6999998,
"decisions" : [ {
"decider" : "filter",
"decision" : "NO",
"explanation" : "node does not match index include filters [foo:\"bar\"]"
} ]
}
}
}
```
Only "NO" decisions are returned by default, but all decisions can be
shown by specifying the `?include_yes_decisions=true` parameter in the
request.
Resolves#14593
https://github.com/elastic/elasticsearch/pull/17288 added a check to enforce that the `discovery.zen.minimum_master_nodes` configuration is set when nodes have the `host`, `port`, or `bind_host` set in either `transport` or general `network` configuration sections. This was documented incorrectly as "nodes that are bound to a non-loopback interface", which lead to confusion as I set `network.host: "localhost"` and the check was still failing.
This change updates the docs to detail the actual check. I think it also highlights how complex the check is and the need for a simpler solution.
discovery.zen.minimum_master_nodes is the single most important setting to set on a production cluster. We have no way of supplying a good default so it must be set by the user. Binding a node to a public IP (as opposed to the default local host) is a good enough indication that a node will be part of a production cluster cluster and thus it's a good tradeoff to enforce the settings. Note that nothing prevent users from setting it to 1 in a single node cluster.
Closes#17288
We currently have a `discovery.zen.master_election.filter_client` setting that control whether their ping responses are ignored for master election (which is the current default). With the push to treat client nodes as normal nodes (and promote the transport/rest clients for client work), this should be changed. This commit remove this setting and it's companion `discovery.zen.master_election.filter_data` setting (currently defaulting to false) in favor of singe `discovery.zen.master_election.ignore_non_master_pings` setting with more intuitive name (defaulting to false).
Resolves#17325Closes#17329
The available memory metric was always set to `0` since 2.0.beta1 (bug). was left behind but never set. Turns out the section wasn't that useful, as it would only output the total memory available throughout all nodes in the cluster. We decided to remove the section then.
In #17198, we removed suggest transport action, which
used the `suggest` threadpool to execute requests. Now
`suggest` threadpool is unused and suggest requests are
executed on the `search` threadpool.
We can be better at checking `buffer_size` and `chunk_size` for S3 repositories.
For example, we know that:
* `buffer_size` should be more than `5mb`
* `chunk_size` should be no more than `5tb`
* `buffer_size` should be lower than `chunk_size`
Otherwise, setting `buffer_size` is useless.
For the record:
`chunk_size` is a Snapshot setting whatever the implementation is.
`buffer_size` is an S3 implementation setting.
Let say that you are snapshotting a 500mb file. If you set `chunk_size` to `200mb`, then Snapshot service will call S3 repository to snapshot 3 files with the following sizes:
* `200mb`
* `200mb`
* `100mb`
If you set `buffer_size` to `100mb` (AWS maximum size recommendation), the first file of `200mb` will be uploaded on S3 using the multipart feature in 2 chunks and the workflow is basically the following:
* create the multipart request and get back an `id` from AWS S3 platform
* upload part1: `100mb`
* upload part2: `100mb`
* "commit" the full upload using the `id`.
Closes#17244.
Currently if you run an `exists` query on an object, it will resolve all sub
fields and create a disjunction for all those fields. However the `_field_names`
mapper indexes paths for objects so we could query object paths directly.
I also changed the query parser to reject `exists` queries if the `_field_names`
field is disabled since it would be a big performance trap.
In 5.0 we don't allow index settings to be specified on the node level ie.
in yaml files or via commandline argument. This can cause problems during
upgrade if this was used extensively. For instance if analyzers where
specified on a node level this might cause the index to be closed when
imported (see #17187). In such a case all indices relying on this
must be updated via `PUT /${index}/_settings`. Yet, this API has slightly
different semantics since it overrides existing settings. To make this less
painful this change adds a `preserve_existing` parameter on that API to ensure
we have the same semantics as if the setting was applied on the node level.
This change also adds a better error message and a change to the migration guide
to ensure upgrades are smooth if index settings are specified on the node level.
If a index setting is detected this change fails the node startup and prints a message
like this:
```
*************************************************************************************
Found index level settings on node level configuration.
Since elasticsearch 5.x index level settings can NOT be set on the nodes
configuration like the elasticsearch.yaml, in system properties or command line
arguments.In order to upgrade all indices the settings must be updated via the
/${index}/_settings API. Unless all settings are dynamic all indices must be closed
in order to apply the upgradeIndices created in the future should use index templates
to set default values.
Please ensure all required values are updated on all indices by executing:
curl -XPUT 'http://localhost:9200/_all/_settings?preserve_existing=true' -d '{
"index.number_of_shards" : "1",
"index.query.default_field" : "main_field",
"index.translog.durability" : "async",
"index.ttl.disable_purge" : "true"
}'
*************************************************************************************
```
Also replaced the PercolatorQueryRegistry with the new PercolatorQueryCache.
The PercolatorFieldMapper stores the rewritten form of each percolator query's xcontext
in a binary doc values field. This make sure that the query rewrite happens only during
indexing (some queries for example fetch shapes, terms in remote indices) and
the speed up the loading of the queries in the percolator query cache.
Because the percolator now works inside the search infrastructure a number of features
(sorting fields, pagination, fetch features) are available out of the box.
The following feature requests are automatically implemented via this refactoring:
Closes#10741Closes#7297Closes#13176Closes#13978Closes#11264Closes#10741Closes#4317
Today, certain bootstrap properties are set and read via system
properties. This action-at-distance way of managing these properties is
rather confusing, and completely unnecessary. But another problem exists
with setting these as system properties. Namely, these system properties
are interpreted as Elasticsearch settings, not all of which are
registered. This leads to Elasticsearch failing to startup if any of
these special properties are set. Instead, these properties should be
kept as local as possible, and passed around as method parameters where
needed. This eliminates the action-at-distance way of handling these
properties, and eliminates the need to register these non-setting
properties. This commit does exactly that.
Additionally, today we use the "-D" command line flag to set the
properties, but this is confusing because "-D" is a special flag to the
JVM for setting system properties. This creates confusion because some
"-D" properties should be passed via arguments to the JVM (so via
ES_JAVA_OPTS), and some should be passed as arguments to
Elasticsearch. This commit changes the "-D" flag for Elasticsearch
settings to "-E".
This commit adds fields bytes_recovered and files_recovered to the cat
recovery API. These fields, respectively, indicate the total number of
bytes and files recovered. Additionally, for consistency, some totals
fields and translog recovery fields have been renamed.
Closes#17064