Some features have been deprecated since `6.0` like the `_parent` field or the
ability to have multiple types per index. This allows to remove quite some
code, which in-turn will hopefully make it easier to proceed with the removal
of types.
Allowing `_doc` as a type will enable users to make the transition to 7.0
smoother since the index APIs will be `PUT index/_doc/id` and `POST index/_doc`.
This also moves most of the documentation to `_doc` as a type name.
Closes#27750Closes#27751
* Remove the _all metadata field
This change removes the `_all` metadata field. This field is deprecated in 6
and cannot be activated for indices created in 6 so it can be safely removed in
the next major version (e.g. 7).
Today if we search across a large amount of shards we hit every shard. Yet, it's quite
common to search across an index pattern for time based indices but filtering will exclude
all results outside a certain time range ie. `now-3d`. While the search can potentially hit
hundreds of shards the majority of the shards might yield 0 results since there is not document
that is within this date range. Kibana for instance does this regularly but used `_field_stats`
to optimize the indexes they need to query. Now with the deprecation of `_field_stats` and it's upcoming removal a single dashboard in kibana can potentially turn into searches hitting hundreds or thousands of shards and that can easily cause search rejections even though the most of the requests are very likely super cheap and only need a query rewriting to early terminate with 0 results.
This change adds a pre-filter phase for searches that can, if the number of shards are higher than a the `pre_filter_shard_size` threshold (defaults to 128 shards), fan out to the shards
and check if the query can potentially match any documents at all. While false positives are possible, a negative response means that no matches are possible. These requests are not subject to rejection and can greatly reduce the number of shards a request needs to hit. The approach here is preferable to the kibana approach with field stats since it correctly handles aliases and uses the correct threadpools to execute these requests. Further it's completely transparent to the user and improves scalability of elasticsearch in general on large clusters.
It adds notes about:
- how preference can help optimize cache usage
- the fact that too many replicas can hurt search performance due to lower
utilization of the filesystem cache
- how index sorting can improve _source compression
- how always putting fields in the same order in documents can improve _source
compression
This snapshot has faster range queries on range fields (LUCENE-7828), more
accurate norms (LUCENE-7730) and the ability to use fake term frequencies
(LUCENE-7854).
This is a tentative to revive #15939 motivated by elastic/beats#1941.
Half-floats are a pretty bad option for storing percentages. They would likely
require 2 bytes all the time while they don't need more than one byte.
So this PR exposes a new `scaled_float` type that requires a `scaling_factor`
and internally indexes `value*scaling_factor` in a long field. Compared to the
original PR it exposes a lower-level API so that the trade-offs are clearer and
avoids any reference to fixed precision that might imply that this type is more
accurate (actually it is *less* accurate).
In addition to being more space-efficient for some use-cases that beats is
interested in, this is also faster that `half_float` unless we can improve the
efficiency of decoding half-float bits (which is currently done using software)
or until Java gets first-class support for half-floats.
This moves the "Performance Considerations for Elasticsearch Indexing" blog post
to the reference guide and adds similar recommendations for tuning disk usage
and search speed.