At present the ML C++ artifact is always downloaded from
S3. This change adds an option to configure the location.
(The intention is to use a file:/// URL to pick up the
artifact built in a Docker container in ml-cpp PR builds
so that C++ changes that will break Java integration tests
can be detected before the ml-cpp PRs are merged.)
Relates elastic/ml-cpp#766
Moves common field extraction logic to its own package so that it can
be used both for anomaly detection and data frame analytics.
In preparation for refactoring extraction fields to be simpler and to
support multi-fields properly.
Backport of #48709
* [ML][Inference] separating definition and config object storage (#48651)
This separates out the `definition` object from being stored within the configuration object in the index.
This allows us to gather the config object without decompressing a potentially large definition.
Additionally, `input` is moved to the TrainedModelConfig object and out of the definition. This is so the trained input fields are accessible outside the potentially large model definition.
There is a watchdog in order to avoid long running (and expensive)
grok expressions. Currently the watchdog is thread based, threads
that run grok expressions are registered and after completion unregister.
If these threads stay registered for too long then the watch dog interrupts
these threads. Joni (the library that powers grok expressions) has a
mechanism that checks whether the current thread is interrupted and
if so abort the pattern matching.
Newer versions have an additional method to abort long running pattern
matching inside joni. Instead of checking the thread's interrupted flag,
joni now also checks a volatile field that can be set via a `Matcher`
instance. This is more efficient method for aborting long running matches.
(joni checks each 30k iterations whether interrupted flag is set vs.
just checking a volatile field)
Recently we upgraded to a recent joni version (#47374), and this PR
is a followup of that PR.
This change should also fix#43673, since it appears when unit tests
are ran the a test runner thread's interrupted flag may already have
been set, due to some thread reuse.
Reverting the change introducing IsoLocal.ROOT and introducing IsoCalendarDataProvider that defaults start of the week to Monday and requires minimum 4 days in first week of a year. This extension is using java SPI mechanism and defaults for Locale.ROOT only.
It require jvm property java.locale.providers to be set with SPI,COMPAT
closes#41670
backport #48209
If a job stops right after reindexing is finished but before
we refresh the destination index, we don't refresh at all.
If the job is started again right after, it jumps into the analyzing state.
However, the data is still not searchable.
This is why we were seeing test failures that we start the process
expecting X rows (where X is lower than the expected number of docs)
and we end up getting X+.
We fix this by moving the refresh of the dest index right before
we start the process so it always ensures the data is searchable.
Closes#47612
Backport of #48090
This adds parsing an inference model as a possible
result of the analytics process. When we do parse such a model
we persist a `TrainedModelConfig` into the inference index
that contains additional metadata derived from the running job.
Audit messages are stored with millisecond timestamps. If two
messages have the same millisecond timestamp then asserting on
their order is impossible given the information available.
This PR changes the assertion on audit messages in the native
data frame analytics tests to assert that the expected audit
messages exist in any order.
Fixes#48035
This change adds:
- A new option, allow_lazy_open, to anomaly detection jobs
- A new option, allow_lazy_start, to data frame analytics jobs
Both work in the same way: they allow a job to be
opened/started even if no ML node exists that can
accommodate the job immediately. In this situation
the job waits in the opening/starting state until ML
node capacity is available. (The starting state for data
frame analytics jobs is new in this change.)
Additionally, the ML nightly maintenance tasks now
creates audit warnings for ML jobs that are unassigned.
This means that jobs that cannot be assigned to an ML
node for a very long time will show a yellow warning
triangle in the UI.
A final change is that it is now possible to close a job
that is not assigned to a node without using force.
This is because previously jobs that were open but
not assigned to a node were an aberration, whereas
after this change they'll be relatively common.
Adds a new datafeed config option, max_empty_searches,
that tells a datafeed that has never found any data to stop
itself and close its associated job after a certain number
of real-time searches have returned no data.
Backport of #47922
Usually syslog timestamps have two spaces before a single
digit day-of-month. However, in some non-syslog cases
where syslog-like timestamps are used there is only one
space. The grok pattern supports this, so the timestamp
parser should too. This change makes the
find_file_structure endpoint do this.
Also fixes another problem that the same test case
exposed in the find_file_structure endpoint, which was
that the exclude_lines_pattern for delimited files was
always created on the assumption the delimiter was a
comma. Now it is based on the actual delimiter.
* [ML][Analytics] fix bug where regression deleted early does not delete state (#47885)
* [ML][Analytics] fix bug where regression deleted early does not delete state
* Fixing ml with security test failure
* fixing for older java
When exceptions could be returned from another node, the exception
might be wrapped in a `RemoteTransportException`. In places where
we handled specific exceptions using `instanceof` we ought to unwrap
the cause first.
This commit attempts to fix this issue after searching code in the ML
plugin.
Backport of #47676
Adds the following parameters to `outlier_detection`:
- `compute_feature_influence` (boolean): whether to compute or not
feature influence scores
- `outlier_fraction` (double): the proportion of the data set assumed
to be outlying prior to running outlier detection
- `standardization_enabled` (boolean): whether to apply standardization
to the feature values
Backport of #47600
When an ML job runs the memory required can be
broken down into:
1. Memory required to load the executable code
2. Instrumented model memory
3. Other memory used by the job's main process or
ancilliary processes that is not instrumented
Previously we added a simple fixed overhead to
account for 1 and 3. This was 100MB for anomaly
detection jobs (large because of the completely
uninstrumented categorization function and
normalize process), and 20MB for data frame
analytics jobs.
However, this was an oversimplification because
the executable code only needs to be loaded once
per machine. Also the 100MB overhead for anomaly
detection jobs was probably too high in most cases
because categorization and normalization don't use
_that_ much memory.
This PR therefore changes the calculation of memory
requirements as follows:
1. A per-node overhead of 30MB for _only_ the first
job of any type to be run on a given node - this
is to account for loading the executable code
2. The established model memory (if applicable) or
model memory limit of the job
3. A per-job overhead of 10MB for anomaly detection
jobs and 5MB for data frame analytics jobs, to
account for the uninstrumented memory usage
This change will enable more jobs to be run on the
same node. It will be particularly beneficial when
there are a large number of small jobs. It will
have less of an effect when there are a small number
of large jobs.
While it seemed like the PUT data frame analytics action did not
have to be a master node action as the config is stored in an index
rather than the cluster state, there are other subtle nuances which
make it worthwhile to convert it. In particular, it helps maintain
order of execution for put actions which are anyhow user driven and
are expected to have low volume.
This commit converts `TransportPutDataFrameAnalyticsAction` from
a handled transport action to a master node action.
Note this means that the action might fail in a mixed cluster
but as the API is still experimental and not widely used there will
be few moments more suitable to make this change than now.
Due to #47003 many clusters will have built up a
large backlog of expired results. On upgrading to
a version where that bug is fixed users could find
that the first ML daily maintenance task deletes
a very large amount of documents.
This change introduces throttling to the
delete-by-query that the ML daily maintenance uses
to delete expired results to limit it to deleting an
average 200 documents per second. (There is no
throttling for state/forecast documents as these
are expected to be lower volume.)
Additionally a rough time limit of 8 hours is applied
to the whole delete expired data action. (This is only
rough as it won't stop part way through a single
operation - it only checks the timeout between
operations.)
Relates #47103
This commit restores the model state if available in data
frame analytics jobs.
In addition, this changes the start API so that a stopped job
can be restarted. As we now store the progress in the state index
when the task is stopped, we can use it to determine what state
the job was in when it got stopped.
Note that in order to be able to distinguish between a job
that runs for the first time and another that is restarting,
we ensure reindexing progress is reported to be at least 1
for a running task.
* [ML][Inference] adding .ml-inference* index and storage (#47267)
* [ML][Inference] adding .ml-inference* index and storage
* Addressing PR comments
* Allowing null definition, adding validation tests for model config
* fixing line length
* adjusting for backport
A refactoring in 6.6 meant that the ML daily
maintenance actions have not been run at all
since then. This change installs the local
master listener that schedules the ML daily
maintenance, and also defends against some
subtle race conditions that could occur in the
future if a node flipped very quickly between
master and non-master.
Fixes#47003
Backport of #45794 to 7.x. Convert most `awaitBusy` calls to
`assertBusy`, and use asserts where possible. Follows on from #28548 by
@liketic.
There were a small number of places where it didn't make sense to me to
call `assertBusy`, so I kept the existing calls but renamed the method to
`waitUntil`. This was partly to better reflect its usage, and partly so
that anyone trying to add a new call to awaitBusy wouldn't be able to find
it.
I also didn't change the usage in `TransportStopRollupAction` as the
comments state that the local awaitBusy method is a temporary
copy-and-paste.
Other changes:
* Rework `waitForDocs` to scale its timeout. Instead of calling
`assertBusy` in a loop, work out a reasonable overall timeout and await
just once.
* Some tests failed after switching to `assertBusy` and had to be fixed.
* Correct the expect templates in AbstractUpgradeTestCase. The ES
Security team confirmed that they don't use templates any more, so
remove this from the expected templates. Also rewrite how the setup
code checks for templates, in order to give more information.
* Remove an expected ML template from XPackRestTestConstants The ML team
advised that the ML tests shouldn't be waiting for any
`.ml-notifications*` templates, since such checks should happen in the
production code instead.
* Also rework the template checking code in `XPackRestTestHelper` to give
more helpful failure messages.
* Fix issue in `DataFrameSurvivesUpgradeIT` when upgrading from < 7.4
When the ML native multi-node tests use _cat/indices/_all
and the request goes to a non-master node, _all is
translated to a list of concrete indices by the authz layer
on the coordinating node before the request is forwarded
to the master node. Then it is possible for the master
node to return an index_not_found_exception if one of
the concrete indices that was expanded on the
coordinating node has been deleted in the meantime.
(#47159 has been opened to track the underlying problem.)
It has been observed that the index that gets deleted when
the problem affects the ML native multi-node tests is
always the ML notifications index. The tests that fail are
only interested in the presence or absense of ML results
indices. Therefore the workaround is to only _cat indices
that match the ML results index pattern.
Fixes#45652
* [ML][Inference] Feature pre-processing objects and functions (#46777)
To support inference on pre-trained machine learning models, some basic feature encoding will be necessary. I am using a named object serialization approach so new encodings/pre-processing steps could be added in the future.
This PR lays down the ground work for 3 basic encodings:
* HotOne
* Target Mean
* Frequency
More feature encodings or pre-processings could be added in the future:
* Handling missing columns
* Standardization
* Label encoding
* etc....
* fixing compilation for namedxcontent tests
When using auto-generated IDs + the ingest drop processor (which looks to be used by filebeat
as well) + coordinating nodes that do not have the ingest processor functionality, this can lead
to a NullPointerException.
The issue is that markCurrentItemAsDropped() is creating an UpdateResponse with no id when
the request contains auto-generated IDs. The response serialization is lenient for our
REST/XContent format (i.e. we will send "id" : null) but the internal transport format (used for
communication between nodes) assumes for this field to be non-null, which means that it can't
be serialized between nodes. Bulk requests with ingest functionality are processed on the
coordinating node if the node has the ingest capability, and only otherwise sent to a different
node. This means that, in order to reproduce this, one needs two nodes, with the coordinating
node not having the ingest functionality.
Closes#46678
This commit reuses the same state processor that is used for autodetect
to parse state output from data frame analytics jobs. We then index the
state document into the state index.
Backport of #46804
It is possible for a running analytics job that its config is removed
from the '.ml-config' index (perhaps the user deleted the entire index,
etc.). In that case the task remains without a matching config. I have
raised #46781 to discuss how to deal with this issue.
This commit focuses on `MlMemoryTracker` and changes it so that when
we get the configs for the running tasks we leniently ignore missing ones.
This at least means memory tracking will keep working for other jobs
if one or more are missing.
In addition, this commit makes the cleanup code for native analytics
tests more robust by explicitly stopping all jobs and force-stopping
if an error occurs. This helps so that a single failing test does
not cause other tests fail due to pending tasks.
Backport of #46789
When the stop API is called while the task is running there is
a chance the task gets marked completed twice. This may cause
undesired side effects, like indexing the progress document a second
time after the stop API has returned (the cause for #46705).
This commit adds a check that the task has not been completed before
proceeding to mark it so. In addition, when we update the task's state
we could get some warnings that the task was missing if the stop API
has been called in the meantime. We now check the errors are
`ResourceNotFoundException` and ignore them if so.
Closes#46705
Backports #46721
This is fixing a bug where if an analytics job is started before any
anomaly detection job is opened, we create an index after the state
write alias.
Instead, we should create the state index and alias before starting
an analytics job and this commit makes sure this is the case.
Backport of #46602
After starting the analytics job and checking its state
the state can be any of "started", "reindexing" or
"analyzing" depending on how quickly the work is done.
Investigating the test failure reported in #45518 it appears that
the datafeed task was not found during a tast state update. There
are only two places where such an update is performed: when we set
the state to `started` and when we set it to `stopping`. We handle
`ResourceNotFoundException` in the latter but not in the former.
Thus the test reveals a rare race condition where the datafeed gets
requested to stop before we managed to update its state to `started`.
I could not reproduce this scenario but it would be my best guess.
This commit catches `ResourceNotFoundException` while updating the
state to `started` and lets the task terminate smoothly.
Closes#45518
Backport of #46495
ML users who upgrade from versions prior to 7.4 to 7.4 or later
will have ML results indices that do not have mappings for the
total_search_time_ms field. Therefore, when searching these
indices we must tolerate this field not having a mapping.
Fixes#46437
This refactors `DataFrameAnalyticsTask` into its own class.
The task has quite a lot of functionality now and I believe it would
make code more readable to have it live as its own class rather than
an inner class of the start action class.
Backport of #46402
* [ML] waiting for ml indices before waiting task assignment testFullClusterRestart
* waiting for a stable cluster after fullrestart
* removing unused imports
The test seems to have been failing due to a race condition between
stopping the task and refreshing the destination index. In particular,
we were going forward with refreshing the destination index even
though the task stopped in the meantime. This was fixed in
request.
Closes#43960
Backport of #46271
Though we allow CCS within datafeeds, users could prevent nodes from accessing remote clusters. This can cause mysterious errors and difficult to troubleshoot.
This commit adds a check to verify that `cluster.remote.connect` is enabled on the current node when a datafeed is configured with a remote index pattern.
* [ML] Regression dependent variable must be numeric
This adds a validation that the dependent variable of a regression
analysis must be numeric.
* Address review comments and fix some problems
In addition to addressing the review comments, this
commit fixes a few issues I found during testing.
In particular:
- if there were mappings for required fields but they were
not included we were not reporting the error
- if explicitly included fields had unsupported types we were
not reporting the error
Unfortunately, I couldn't get those fixed without refactoring
the code in `ExtractedFieldsDetector`.
This commit adds support for `boolean` fields in data frame
analytics (and currently both outlier detection and regression).
The analytics process expects `boolean` fields to be encoded as
integers with 0 or 1 value.
Adds a parameter `training_percent` to regression. The default
value is `100`. When the parameter is set to a value less than `100`,
from the rows that can be used for training (ie. those that have a
value for the dependent variable) we randomly choose whether to actually
use for training. This enables splitting the data into a training set and
the rest, usually called testing, validation or holdout set, which allows
for validating the model on data that have not been used for training.
Technically, the analytics process considers as training the data that
have a value for the dependent variable. Thus, when we decide a training
row is not going to be used for training, we simply clear the row's
dependent variable.
The native process requires that there be a non-zero number of rows to analyze. If the flag --rows 0 is passed to the executable, it throws and does not start.
When building the configuration for the process we should not start the native process if there are no rows.
Adding some logging to indicate what is occurring.
Previously, the stats API reports a progress percentage
for DF analytics tasks that are running and are in the
`reindexing` or `analyzing` state.
This means that when the task is `stopped` there is no progress
reported. Thus, one cannot distinguish between a task that never
run to one that completed.
In addition, there are blind spots in the progress reporting.
In particular, we do not account for when data is loaded into the
process. We also do not account for when results are written.
This commit addresses the above issues. It changes progress
to being a list of objects, each one describing the phase
and its progress as a percentage. We currently have 4 phases:
reindexing, loading_data, analyzing, writing_results.
When the task stops, progress is persisted as a document in the
state index. The stats API now reports progress from in-memory
if the task is running, or returns the persisted document
(if there is one).
* [ML] Adding data frame analytics stats to _usage API (#45820)
* [ML] Adding data frame analytics stats to _usage API
* making the size of analytics stats 10k
* adjusting backport
Regression analysis support missing fields. Even more, it is expected
that the dependent variable has missing fields to the part of the
data frame that is not for training.
This commit allows to declare that an analysis supports missing values.
For such analysis, rows with missing values are not skipped. Instead,
they are written as normal with empty strings used for the missing values.
This also contains a fix to the integration test.
Closes#45425
* [ML] better handle empty results when evaluating regression
* adding new failure test to ml_security black list
* fixing equality check for regression results
We cannot know how long the analysis will take to complete thus we should not have
a timeout. Note that if the process crashes, the result processor will pick the
exception due to the stream closing.
Closes#45723
Changes the order of parameters in Geometries from lat, lon to lon, lat
and moves all Geometry classes are moved to the
org.elasticsearch.geomtery package.
Backport of #45332Closes#45048
* Reenable Integ Tests in native-multi-node-tests
* The tests broken here were likely fixed by #45463 => let's reenable them and see if things run fine again
* Relates #45405, #45455
This commit adds a first draft of a regression analysis
to data frame analytics. There is high probability that
the exact syntax might change.
This commit adds the new analysis type and its parameters as
well as appropriate validation. It also modifies the extractor
and the fields detector to be able to handle categorical fields
as regression analysis supports them.
In the FIPS JVM the JVM default locale seems to leak into places
where it should be overridden. This change skips assertions
in TimestampFormatFinderTests.testGuessIsDayFirstFromLocale
that may be impacted.
Fixes#45140
When doing a fieldwise Levenshtein distance comparison
between CSV rows, this change ignores all fields that
have long values, not just the longest field.
This approach works better for CSV formats that have
multiple freeform text fields rather than just a single
"message" field.
Fixes#45047
If one tries to start a DF analytics job that has already run,
the result will be that the task will fail after reindexing the
dest index from the source index. The results of the prior run
will be gone and the task state is not properly set to failed
with the failure reason.
This commit improves the behavior in this scenario. First, we
set the task state to `failed` in a set of failures that were
missed. Second, a validation is added that if the destination
index exists, it must be empty.
In case closing the process throws an exception we should be catching
it no matter its type. The process may have terminated because of a
fatal error in which case closing the process will throw a server
error, not an `IOException`. If this happens we fail to mark the
persistent task as failed and the task gets in limbo.
As data frame rows with missing values for analyzed fields are skipped,
we can be more efficient by including a query that only picks documents
that have values for all analyzed fields. Besides improving the number
of documents we go through, we also provide a more accurate measurement
of how many rows we need which reduces the memory requirements.
This also adds an integration test that runs outlier detection on data
with missing fields.
TaskListener accepts today Throwable in its onFailure method. Though
looking at where it is called (TransportAction), it can never be
notified of a Throwable.
This commit changes the signature of TaskListener#onFailure so that it
accepts an `Exception` rather than a `Throwable` as second argument.
* Switch from using docvalue_fields to extracting values from _source
where applicable. Doing this means parsing the _source and handling the
numbers parsing just like Elasticsearch is doing it when it's indexing
a document.
* This also introduces a minor limitation: aliases type of fields that
are NOT part of a tree of sub-fields will not be able to be retrieved
anymore. field_caps API doesn't shed any light into a field being an
alias or not and at _source parsing time there is no way to know if a
root field is an alias or not. Fields of the type "a.b.c.alias" can be
extracted from docvalue_fields, only if the field they point to can be
extracted from docvalue_fields. Also, not all fields in a hierarchy of
fields can be evaluated to being an alias.
(cherry picked from commit 8bf8a055e38f00df5f49c8d97f632f69d6e00c2c)
* Mute failing test
tracked in #44552
* mute EvilSecurityTests
tracking in #44558
* Fix line endings in ESJsonLayoutTests
* Mute failing ForecastIT test on windows
Tracking in #44609
* mute BasicRenormalizationIT.testDefaultRenormalization
tracked in #44613
* fix mute testDefaultRenormalization
* Increase busyWait timeout windows is slow
* Mute failure unconfigured node name
* mute x-pack internal cluster test windows
tracking #44610
* Mute JvmErgonomicsTests on windows
Tracking #44669
* mute SharedClusterSnapshotRestoreIT testParallelRestoreOperationsFromSingleSnapshot
Tracking #44671
* Mute NodeTests on Windows
Tracking #44256
Removes the warning suppression -Xlint:-deprecation,-rawtypes,-serial,-try,-unchecked.
Many warnings were unchecked warnings in the test code often because of the use of mocks.
These are suppressed with @SuppressWarning
many classes still use the Streamable constructors of HandledTransportAction,
this commit moves more of those classes to the new Writeable constructors.
relates #34389.
This commit adds constructors to AcknolwedgedRequest subclasses to
implement Writeable.Reader, and ensures all future subclasses implement
the same.
relates #34389
* Migrate ML Actions to use writeable ActionType (#44302)
This commit converts all the StreamableResponseActionType
actions in the ML core module to be ActionType and leverage
the Writeable infrastructure.
* Add Snapshot Lifecycle Management (#43934)
* Add SnapshotLifecycleService and related CRUD APIs
This commit adds `SnapshotLifecycleService` as a new service under the ilm
plugin. This service handles snapshot lifecycle policies by scheduling based on
the policies defined schedule.
This also includes the get, put, and delete APIs for these policies
Relates to #38461
* Make scheduledJobIds return an immutable set
* Use Object.equals for SnapshotLifecyclePolicy
* Remove unneeded TODO
* Implement ToXContentFragment on SnapshotLifecyclePolicyItem
* Copy contents of the scheduledJobIds
* Handle snapshot lifecycle policy updates and deletions (#40062)
(Note this is a PR against the `snapshot-lifecycle-management` feature branch)
This adds logic to `SnapshotLifecycleService` to handle updates and deletes for
snapshot policies. Policies with incremented versions have the old policy
cancelled and the new one scheduled. Deleted policies have their schedules
cancelled when they are no longer present in the cluster state metadata.
Relates to #38461
* Take a snapshot for the policy when the SLM policy is triggered (#40383)
(This is a PR for the `snapshot-lifecycle-management` branch)
This commit fills in `SnapshotLifecycleTask` to actually perform the
snapshotting when the policy is triggered. Currently there is no handling of the
results (other than logging) as that will be added in subsequent work.
This also adds unit tests and an integration test that schedules a policy and
ensures that a snapshot is correctly taken.
Relates to #38461
* Record most recent snapshot policy success/failure (#40619)
Keeping a record of the results of the successes and failures will aid
troubleshooting of policies and make users more confident that their
snapshots are being taken as expected.
This is the first step toward writing history in a more permanent
fashion.
* Validate snapshot lifecycle policies (#40654)
(This is a PR against the `snapshot-lifecycle-management` branch)
With the commit, we now validate the content of snapshot lifecycle policies when
the policy is being created or updated. This checks for the validity of the id,
name, schedule, and repository. Additionally, cluster state is checked to ensure
that the repository exists prior to the lifecycle being added to the cluster
state.
Part of #38461
* Hook SLM into ILM's start and stop APIs (#40871)
(This pull request is for the `snapshot-lifecycle-management` branch)
This change allows the existing `/_ilm/stop` and `/_ilm/start` APIs to also
manage snapshot lifecycle scheduling. When ILM is stopped all scheduled jobs are
cancelled.
Relates to #38461
* Add tests for SnapshotLifecyclePolicyItem (#40912)
Adds serialization tests for SnapshotLifecyclePolicyItem.
* Fix improper import in build.gradle after master merge
* Add human readable version of modified date for snapshot lifecycle policy (#41035)
* Add human readable version of modified date for snapshot lifecycle policy
This small change changes it from:
```
...
"modified_date": 1554843903242,
...
```
To
```
...
"modified_date" : "2019-04-09T21:05:03.242Z",
"modified_date_millis" : 1554843903242,
...
```
Including the `"modified_date"` field when the `?human` field is used.
Relates to #38461
* Fix test
* Add API to execute SLM policy on demand (#41038)
This commit adds the ability to perform a snapshot on demand for a policy. This
can be useful to take a snapshot immediately prior to performing some sort of
maintenance.
```json
PUT /_ilm/snapshot/<policy>/_execute
```
And it returns the response with the generated snapshot name:
```json
{
"snapshot_name" : "production-snap-2019.04.09-rfyv3j9qreixkdbnfuw0ug"
}
```
Note that this does not allow waiting for the snapshot, and the snapshot could
still fail. It *does* record this information into the cluster state similar to
a regularly trigged SLM job.
Relates to #38461
* Add next_execution to SLM policy metadata (#41221)
* Add next_execution to SLM policy metadata
This adds the next time a snapshot lifecycle policy will be executed when
retriving a policy's metadata, for example:
```json
GET /_ilm/snapshot?human
{
"production" : {
"version" : 1,
"modified_date" : "2019-04-15T21:16:21.865Z",
"modified_date_millis" : 1555362981865,
"policy" : {
"name" : "<production-snap-{now/d}>",
"schedule" : "*/30 * * * * ?",
"repository" : "repo",
"config" : {
"indices" : [
"foo-*",
"important"
],
"ignore_unavailable" : true,
"include_global_state" : false
}
},
"next_execution" : "2019-04-15T21:16:30.000Z",
"next_execution_millis" : 1555362990000
},
"other" : {
"version" : 1,
"modified_date" : "2019-04-15T21:12:19.959Z",
"modified_date_millis" : 1555362739959,
"policy" : {
"name" : "<other-snap-{now/d}>",
"schedule" : "0 30 2 * * ?",
"repository" : "repo",
"config" : {
"indices" : [
"other"
],
"ignore_unavailable" : false,
"include_global_state" : true
}
},
"next_execution" : "2019-04-16T02:30:00.000Z",
"next_execution_millis" : 1555381800000
}
}
```
Relates to #38461
* Fix and enhance tests
* Figured out how to Cron
* Change SLM endpoint from /_ilm/* to /_slm/* (#41320)
This commit changes the endpoint for snapshot lifecycle management from:
```
GET /_ilm/snapshot/<policy>
```
to:
```
GET /_slm/policy/<policy>
```
It mimics the ILM path only using `slm` instead of `ilm`.
Relates to #38461
* Add initial documentation for SLM (#41510)
* Add initial documentation for SLM
This adds the initial documentation for snapshot lifecycle management.
It also includes the REST spec API json files since they're sort of
documentation.
Relates to #38461
* Add `manage_slm` and `read_slm` roles (#41607)
* Add `manage_slm` and `read_slm` roles
This adds two more built in roles -
`manage_slm` which has permission to perform any of the SLM actions, as well as
stopping, starting, and retrieving the operation status of ILM.
`read_slm` which has permission to retrieve snapshot lifecycle policies as well
as retrieving the operation status of ILM.
Relates to #38461
* Add execute to the test
* Fix ilm -> slm typo in test
* Record SLM history into an index (#41707)
It is useful to have a record of the actions that Snapshot Lifecycle
Management takes, especially for the purposes of alerting when a
snapshot fails or has not been taken successfully for a certain amount of
time.
This adds the infrastructure to record SLM actions into an index that
can be queried at leisure, along with a lifecycle policy so that this
history does not grow without bound.
Additionally,
SLM automatically setting up an index + lifecycle policy leads to
`index_lifecycle` custom metadata in the cluster state, which some of
the ML tests don't know how to deal with due to setting up custom
`NamedXContentRegistry`s. Watcher would cause the same problem, but it
is already disabled (for the same reason).
* High Level Rest Client support for SLM (#41767)
* High Level Rest Client support for SLM
This commit add HLRC support for SLM.
Relates to #38461
* Fill out documentation tests with tags
* Add more callouts and asciidoc for HLRC
* Update javadoc links to real locations
* Add security test testing SLM cluster privileges (#42678)
* Add security test testing SLM cluster privileges
This adds a test to `PermissionsIT` that uses the `manage_slm` and `read_slm`
cluster privileges.
Relates to #38461
* Don't redefine vars
* Add Getting Started Guide for SLM (#42878)
This commit adds a basic Getting Started Guide for SLM.
* Include SLM policy name in Snapshot metadata (#43132)
Keep track of which SLM policy in the metadata field of the Snapshots
taken by SLM. This allows users to more easily understand where the
snapshot came from, and will enable future SLM features such as
retention policies.
* Fix compilation after master merge
* [TEST] Move exception wrapping for devious exception throwing
Fixes an issue where an exception was created from one line and thrown in another.
* Fix SLM for the change to AcknowledgedResponse
* Add Snapshot Lifecycle Management Package Docs (#43535)
* Fix compilation for transport actions now that task is required
* Add a note mentioning the privileges needed for SLM (#43708)
* Add a note mentioning the privileges needed for SLM
This adds a note to the top of the "getting started with SLM"
documentation mentioning that there are two built-in privileges to
assist with creating roles for SLM users and administrators.
Relates to #38461
* Mention that you can create snapshots for indices you can't read
* Fix REST tests for new number of cluster privileges
* Mute testThatNonExistingTemplatesAreAddedImmediately (#43951)
* Fix SnapshotHistoryStoreTests after merge
* Remove overridden newResponse functions that have been removed
* Fix compilation for backport
* Fix get snapshot output parsing in test
* [DOCS] Add redirects for removed autogen anchors (#44380)
* Switch <tt>...</tt> in javadocs for {@code ...}
Test clusters currently has its own set of logic for dealing with
finding different versions of Elasticsearch, downloading them, and
extracting them. This commit converts testclusters to use the
DistributionDownloadPlugin.
This commit creates new base classes for master node actions whose
response types still implement Streamable. This simplifies both finding
remaining classes to convert, as well as creating new master node
actions that use Writeable for their responses.
relates #34389
* HLRC: Fix '+' Not Correctly Encoded in GET Req.
* Encode `+` correctly as `%2B` in URL paths
* Keep encoding `+` as space in URL parameters
* Closes#33077
This commit moves the Supplier variant of HandledTransportAction to have
a different ordering than the Writeable.Reader variant. The Supplier
version is used for the legacy Streamable, and currently having the
location of the Writeable.Reader vs Supplier in the same place forces
using casts of Writeable.Reader to select the correct super constructor.
This change in ordering allows easier migration to Writeable.Reader.
relates #34389
Now that ML job configs are stored in an index rather than
cluster state, availability of the .ml-config index is very
important to the operation of ML. When a cluster starts up
the ML persistent tasks will be considered for node
assignment very early on. It is best in this case if
assignment is deferred until after the .ml-config index is
available.
The introduction of data frame analytics jobs has made this
problem worse, because anomaly detection jobs already waited
for the primary shards of the .ml-state, .ml-anomalies-shared
and .ml-meta indices to be available before doing node
assignment, and by coincidence this would probably lead to
the primary shards of .ml-config also being searchable. But
data frame analytics jobs had no other index checks prior to
this change.
This fixes problem 2 of #44156
By default, we don't check ranges while indexing geo_shapes. As a
result, it is possible to index geoshapes that contain contain
coordinates outside of -90 +90 and -180 +180 ranges. Such geoshapes
will currently break SQL and ML retrieval mechanism. This commit removes
these restriction from the validator is used in SQL and ML retrieval.
When the ML memory tracker is refreshed and a refresh is
already in progress the idea is that the second and
subsequent refresh requests receive the same response as
the currently in progress refresh.
There was a bug that if a refresh failed then the ML
memory tracker's view of whether a refresh was in progress
was not reset, leading to every subsequent request being
registered to receive a response that would never come.
This change makes the ML memory tracker pass on failures
as well as successes to all interested parties and reset
the list of interested parties so that further refresh
attempts are possible after either a success or failure.
This fixes problem 1 of #44156
Custom timestamp overrides provided to the find_file_structure
endpoint produced an invalid Grok pattern if the fractional
seconds separator was a dot rather than a comma or colon.
This commit fixes that problem and adds tests for this sort
of timestamp override.
Fixes#44110
The count should match the number of all df-analytics that
matched the id in the request. However, we set the count
to the number of df-analytics returned which was bound to the
`size` parameter. This commit fixes this by setting the count
to the count of the `get` response.
A bug was introduced in 6.6.0 when we added support for
rollup indices. Rollup caps does NOT support looking at
remote indices, consequently, since we always look up rollup
caps, the datafeed fails with an error if its config
includes a concrete remote index. (When all remote indices
in a datafeed config are wildcards the problem did not
occur.)
The rollups feature does not support remote indices, so if
there is any remote index in a datafeed config (wildcarded
or not), we can skip the rollup cap checks. This PR
implements that change.
This brings TokenizerFactory into line with CharFilterFactory and TokenFilterFactory,
and removes the need to pass around tokenizer names when building custom analyzers.
As this means that TokenizerFactory is no longer a functional interface, the commit also
adds a factory method to TokenizerFactory to make construction simpler.
This introduces a `failed` state to which the data frame analytics
persistent task is set to when something unexpected fails. It could
be the process crashing, the results processor hitting some error,
etc. The failure message is then captured and set on the task state.
From there, it becomes available via the _stats API as `failure_reason`.
The df-analytics stop API now has a `force` boolean parameter. This allows
the user to call it for a failed task in order to reset it to `stopped` after
we have ensured the failure has been communicated to the user.
This commit also adds the analytics version in the persistent task
params as this allows us to prevent tasks to run on unsuitable nodes in
the future.
Renames `_id_copy` to `ml__id_copy` as field names starting with
underscore are deprecated. The new field name `ml__id_copy` was
chosen as an obscure enough field that users won't have in their data.
Otherwise, this field is only intented to be used by df-analytics.
If a job is opened and then closed and does nothing in
between then it should not persist any results or state
documents. This change adapts the no-op job test to
assert no results in addition to no state, and to log
any documents that cause this assertion to fail.
Relates elastic/ml-cpp#512
Relates #43680
The Action base class currently works for both Streamable and Writeable
response types. This commit intorduces StreamableResponseAction, for
which only the legacy Action implementions which provide newResponse()
will extend. This eliminates the need for overriding newResponse() with
an UnsupportedOperationException.
relates #34389
Since #41817 was merged the ml-cpp zip file for any
given version has been cached indefinitely by Gradle.
This is problematic, particularly in the case of the
master branch where the version 8.0.0-SNAPSHOT will
be in use for more than a year.
This change tells Gradle that the ml-cpp zip file is
a "changing" dependency, and to check whether it has
changed every two hours. Two hours is a compromise
between checking on every build and annoying developers
with slow internet connections and checking rarely
causing bug fixes in the ml-cpp code to take a long
time to propagate through to elasticsearch PRs that
rely on them.
This commit adds support for multiple source indices.
In order to deal with multiple indices having different mappings,
it attempts a best-effort approach to merge the mappings assuming
there are no conflicts. In case conflicts exists an error will be
returned.
To allow users creating custom mappings for special use cases,
the destination index is now allowed to exist before the analytics
job runs. In addition, settings are no longer copied except for
the `index.number_of_shards` and `index.number_of_replicas`.
* Deduplicate org.elasticsearch.xpack.core.dataframe.utils.TimeUtils and org.elasticsearch.xpack.core.ml.utils.time.TimeUtils into a common class: org.elasticsearch.xpack.core.common.time.TimeUtils.
* Add unit tests for parseTimeField and parseTimeFieldToInstant methods
This change introduces a new setting,
xpack.ml.process_connect_timeout, to enable
the timeout for one of the external ML processes
to connect to the ES JVM to be increased.
The timeout may need to be increased if many
processes are being started simultaneously on
the same machine. This is unlikely in clusters
with many ML nodes, as we balance the processes
across the ML nodes, but can happen in clusters
with a single ML node and a high value for
xpack.ml.node_concurrent_job_allocations.
This merges the initial work that adds a framework for performing
machine learning analytics on data frames. The feature is currently experimental
and requires a platinum license. Note that the original commits can be
found in the `feature-ml-data-frame-analytics` branch.
A new set of APIs is added which allows the creation of data frame analytics
jobs. Configuration allows specifying different types of analysis to be performed
on a data frame. At first there is support for outlier detection.
The APIs are:
- PUT _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}/_stats
- POST _ml/data_frame/analysis/{id}/_start
- POST _ml/data_frame/analysis/{id}/_stop
- DELETE _ml/data_frame/analysis/{id}
When a data frame analytics job is started a persistent task is created and started.
The main steps of the task are:
1. reindex the source index into the dest index
2. analyze the data through the data_frame_analyzer c++ process
3. merge the results of the process back into the destination index
In addition, an evaluation API is added which packages commonly used metrics
that provide evaluation of various analysis:
- POST _ml/data_frame/_evaluate