Commit Graph

9 Commits

Author SHA1 Message Date
Przemysław Witek 909649dd15
[7.x] Implement pseudo Huber loss (PseudoHuber) evaluation metric for regression analysis (#58734) (#58825) 2020-07-01 14:52:06 +02:00
Przemysław Witek 9ea9b7bd3b
[7.x] Implement MSLE (MeanSquaredLogarithmicError) evaluation metric for regression analysis (#58684) (#58731) 2020-06-30 14:09:11 +02:00
Przemysław Witek cc4bc797f9
[7.x] Implement `precision` and `recall` metrics for classification evaluation (#49671) (#50378) 2019-12-19 18:55:05 +01:00
Przemysław Witek c7ac2011eb
[7.x] Implement accuracy metric for multiclass classification (#47772) (#49430) 2019-11-21 15:01:18 +01:00
Przemysław Witek d210bfa888
[7.x] Add MlClientDocumentationIT tests for classification. (#47569) (#47896) 2019-10-11 10:19:55 +02:00
Lisa Cawley d62e1a3d8b [DOCS] Fixes data frame analytics job terminology in HLRC (#46758) 2019-09-16 10:07:59 -07:00
Lisa Cawley 7461259ba6 [DOCS] Adds missing icons to ML HLRC APIs (#46515) 2019-09-10 08:28:02 -07:00
Przemysław Witek 7512337922
[7.x] Allow the user to specify 'query' in Evaluate Data Frame request (#45775) (#45825) 2019-08-22 11:14:26 +02:00
Dimitris Athanasiou 126c2fd2d5
[7.x][ML] Machine learning data frame analytics (#43544) (#43592)
This merges the initial work that adds a framework for performing
machine learning analytics on data frames. The feature is currently experimental
and requires a platinum license. Note that the original commits can be
found in the `feature-ml-data-frame-analytics` branch.

A new set of APIs is added which allows the creation of data frame analytics
jobs. Configuration allows specifying different types of analysis to be performed
on a data frame. At first there is support for outlier detection.

The APIs are:

- PUT _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}/_stats
- POST _ml/data_frame/analysis/{id}/_start
- POST _ml/data_frame/analysis/{id}/_stop
- DELETE _ml/data_frame/analysis/{id}

When a data frame analytics job is started a persistent task is created and started.
The main steps of the task are:

1. reindex the source index into the dest index
2. analyze the data through the data_frame_analyzer c++ process
3. merge the results of the process back into the destination index

In addition, an evaluation API is added which packages commonly used metrics
that provide evaluation of various analysis:

- POST _ml/data_frame/_evaluate
2019-06-25 20:29:11 +03:00