This aggregation will perform normalizations of metrics
for a given series of data in the form of bucket values.
The aggregations supports the following normalizations
- rescale 0-1
- rescale 0-100
- percentage of sum
- mean normalization
- z-score normalization
- softmax normalization
To specify which normalization is to be used, it can be specified
in the normalize agg's `normalizer` field.
For example:
```
{
"normalize": {
"buckets_path": <>,
"normalizer": "percent"
}
}
```
Similar to what the moving function aggregation does, except merging windows of percentiles
sketches together instead of cumulatively merging final metrics
This adjusts the `buckets_path` parser so that pipeline aggs can
select specific buckets (via their bucket keys) instead of fetching
the entire set of buckets. This is useful for bucket_script in
particular, which might want specific buckets for calculations.
It's possible to workaround this with `filter` aggs, but the workaround
is hacky and probably less performant.
- Adjusts documentation
- Adds a barebones AggregatorTestCase for bucket_script
- Tweaks AggTestCase to use getMockScriptService() for reductions and
pipelines. Previously pipelines could just pass in a script service
for testing, but this didnt work for regular aggs. The new
getMockScriptService() method fixes that issue, but needs to be used
for pipelines too. This had a knock-on effect of touching MovFn,
AvgBucket and ScriptedMetric
The date_histogram accepts an interval which can be either a calendar
interval (DST-aware, leap seconds, arbitrary length of months, etc) or
fixed interval (strict multiples of SI units). Unfortunately this is inferred
by first trying to parse as a calendar interval, then falling back to fixed
if that fails.
This leads to confusing arrangement where `1d` == calendar, but
`2d` == fixed. And if you want a day of fixed time, you have to
specify `24h` (e.g. the next smallest unit). This arrangement is very
error-prone for users.
This PR adds `calendar_interval` and `fixed_interval` parameters to any
code that uses intervals (date_histogram, rollup, composite, datafeed, etc).
Calendar only accepts calendar intervals, fixed accepts any combination of
units (meaning `1d` can be used to specify `24h` in fixed time), and both
are mutually exclusive.
The old interval behavior is deprecated and will throw a deprecation warning.
It is also mutually exclusive with the two new parameters. In the future the
old dual-purpose interval will be removed.
The change applies to both REST and java clients.
This pipeline aggregation gives the user the ability to script functions that "move" across a window
of data, instead of single data points. It is the scripted version of MovingAvg pipeline agg.
Through custom script contexts, we expose a number of convenience methods:
- MovingFunctions.max()
- MovingFunctions.min()
- MovingFunctions.sum()
- MovingFunctions.unweightedAvg()
- MovingFunctions.linearWeightedAvg()
- MovingFunctions.ewma()
- MovingFunctions.holt()
- MovingFunctions.holtWinters()
- MovingFunctions.stdDev()
The user can also define any arbitrary logic via their own scripting, or combine with the above methods.
This commit adds a parent pipeline aggregation that allows
sorting the buckets of a parent multi-bucket aggregation.
The aggregation also offers [from] and [size] parameters
in order to truncate the result as desired.
Closes#14928
This commit adds back "id" as the key within a script to specify a
stored script (which with file scripts now gone is no longer ambiguous).
It also adds "source" as a replacement for "code". This is in an attempt
to normalize how scripts are specified across both put stored scripts and script usages, including search template requests. This also deprecates the old inline/stored keys.
and be much more stingy about what we consider a console candidate.
* Add `// CONSOLE` to check-running
* Fix version in some snippets
* Mark groovy snippets as groovy
* Fix versions in plugins
* Fix language marker errors
* Fix language parsing in snippets
This adds support for snippets who's language is written like
`[source, txt]` and `["source","js",subs="attributes,callouts"]`.
This also makes language required for snippets which is nice because
then we can be sure we can grep for snippets in a particular language.
Most of the examples in the pipeline aggregation docs use a small
"sales" test data set and I converted all of the examples that use
it to `// CONSOLE`. There are still a bunch of snippets in the pipeline
aggregation docs that aren't `// CONSOLE` so they aren't tested. Most
of them are "this is the most basic form of this aggregation" so they
are more immune to errors and bit rot then the examples that I converted.
I'd like to do something with them as well but I'm not sure what.
Also, the moving average docs and serial diff docs didn't get a lot of
love from this pass because they don't use the test data set or follow
the same general layout.
Relates to #18160
This change adds a new special path to the buckets_path syntax
`_bucket_count`. This new option will return the number of buckets for a
multi-bucket aggregation, which can then be used in pipeline
aggregations.
Closes#19553
This pipeline will calculate percentiles over a set of sibling buckets. This is an exact
implementation, meaning it needs to cache a copy of the series in memory and sort it to determine
the percentiles.
This comes with a few limitations: to prevent serializing data around, only the requested percentiles
are calculated (unlike the TDigest version, which allows the java API to ask for any percentile).
It also needs to store the data in-memory, resulting in some overhead if the requested series is
very large.
This pipeline aggregation runs a script on each bucket in the parent aggregation to determine whether the bucket is kept in the final aggregation tree. If the script returns true the bucket is retained, if it returns false the bucket is dropped
This adds a new pipeline aggregation, the cumulative sum aggregation. This is a parent aggregation which must be specified as a sub-aggregation to a histogram or date_histogram aggregation. It will add a new aggregation to each bucket containing the sum of a specified metrics over this and all previous buckets.