* Adds support for geo-bounds filtering in geogrid aggregations (#50002)
It is fairly common to filter the geo point candidates in
geohash_grid and geotile_grid aggregations according to some
viewable bounding box. This change introduces the option of
specifying this filter directly in the tiling aggregation.
This is even more relevant to `geo_shape` where the bounds will restrict
the shape to be within the bounds
this optional `bounds` parameter is parsed in an equivalent fashion to
the bounds specified in the geo_bounding_box query.
Adds support for the `offset` parameter to the `date_histogram` source
of composite aggs. The `offset` parameter is supported by the normal
`date_histogram` aggregation and is useful for folks that need to
measure things from, say, 6am one day to 6am the next day.
This is implemented by creating a new `Rounding` that knows how to
handle offsets and delegates to other rounding implementations. That
implementation doesn't fully implement the `Rounding` contract, namely
`nextRoundingValue`. That method isn't used by composite aggs so I can't
be sure that any implementation that I add will be correct. I propose to
leave it throwing `UnsupportedOperationException` until I need it.
Closes#48757
* Docs: Refine note about `after_key`
I was curious about composite aggregations, specifically I wanted to
know how to write a composite aggregation that had all of its buckets
filtered out so you *had* to use the `after_key`. Then I saw that we've
declared composite aggregations not to work with pipelines in #44180. So
I'm not sure you *can* do that any more. Which makes the note about
`after_key` inaccurate. This rejiggers that section of the docs a little
so it is more obvious that you send the `after_key` back to us. And so
it is more obvious that you should *only* use the `after_key` that we
give you rather than try to work it out for yourself.
* Apply suggestions from code review
Co-Authored-By: James Rodewig <james.rodewig@elastic.co>
Co-authored-by: James Rodewig <james.rodewig@elastic.co>
Co-authored-by: Daniel Huang <danielhuang@tencent.com>
This is a spinoff of #48130 that generalizes the proposal to allow early termination with the composite aggregation when leading sources match a prefix or the entire index sort specification.
In such case the composite aggregation can use the index sort natural order to early terminate the collection when it reaches a composite key that is greater than the bottom of the queue.
The optimization is also applicable when a query other than match_all is provided. However the optimization is deactivated for sources that match the index sort in the following cases:
* Multi-valued source, in such case early termination is not possible.
* missing_bucket is set to true
* Minor improvement to the nested aggregation docs
* The attributes name and resellers.name were rather confusing,
especially since the first one was dynamically mapped and not shown
in the documentation (you had to read the test to see it). This
change introduces a unique name for the nested attribute and adds
the example document to the documentation.
* Change the index name from "index" to something more speaking.
* Update docs/reference/aggregations/bucket/nested-aggregation.asciidoc
Co-Authored-By: James Rodewig <james.rodewig@elastic.co>
* Update docs/reference/aggregations/bucket/nested-aggregation.asciidoc
Co-Authored-By: James Rodewig <james.rodewig@elastic.co>
* Update docs/reference/aggregations/bucket/nested-aggregation.asciidoc
Co-Authored-By: James Rodewig <james.rodewig@elastic.co>
Following performance optimisations to the adjacency_matrix aggregation we no longer require this setting. Marked as deprecated and due for removal in 8.0
Related #46324
This adds a `rare_terms` aggregation. It is an aggregation designed
to identify the long-tail of keywords, e.g. terms that are "rare" or
have low doc counts.
This aggregation is designed to be more memory efficient than the
alternative, which is setting a terms aggregation to size: LONG_MAX
(or worse, ordering a terms agg by count ascending, which has
unbounded error).
This aggregation works by maintaining a map of terms that have
been seen. A counter associated with each value is incremented
when we see the term again. If the counter surpasses a predefined
threshold, the term is removed from the map and inserted into a cuckoo
filter. If a future term is found in the cuckoo filter we assume it
was previously removed from the map and is "common".
The map keys are the "rare" terms after collection is done.
The date_histogram accepts an interval which can be either a calendar
interval (DST-aware, leap seconds, arbitrary length of months, etc) or
fixed interval (strict multiples of SI units). Unfortunately this is inferred
by first trying to parse as a calendar interval, then falling back to fixed
if that fails.
This leads to confusing arrangement where `1d` == calendar, but
`2d` == fixed. And if you want a day of fixed time, you have to
specify `24h` (e.g. the next smallest unit). This arrangement is very
error-prone for users.
This PR adds `calendar_interval` and `fixed_interval` parameters to any
code that uses intervals (date_histogram, rollup, composite, datafeed, etc).
Calendar only accepts calendar intervals, fixed accepts any combination of
units (meaning `1d` can be used to specify `24h` in fixed time), and both
are mutually exclusive.
The old interval behavior is deprecated and will throw a deprecation warning.
It is also mutually exclusive with the two new parameters. In the future the
old dual-purpose interval will be removed.
The change applies to both REST and java clients.
Adds some validation to prevent duplicate source names from being
used in the composite agg.
Also refactored to use a ConstructingObjectParser and removed the
private ctor and setter for sources, making it mandatory.
This section should be at the same sub-level as other sections in the
auto date-histogram docs, otherwise it is rendered on to another page
and is confusing for users to understand what it's in reference to.
This helps avoid memory issues when computing deep sub-aggregations. Because it
should be rare to use sub-aggregations with significant terms, we opted to always
choose breadth first as opposed to exposing a `collect_mode` option.
Closes#28652.
Implements `geotile_grid` aggregation
This patch refactors previous implementation https://github.com/elastic/elasticsearch/pull/30240
This code uses the same base classes as `geohash_grid` agg, but uses a different hashing
algorithm to allow zoom consistency. Each grid bucket is aligned to Web Mercator tiles.
This changes adds the support to handle `nested` fields in the `composite`
aggregation. A `nested` aggregation can be used as parent of a `composite`
aggregation in order to target `nested` fields in the `sources`.
Closes#28611
The "include_type_name" parameter was temporarily introduced in #37285 to facilitate
moving the default parameter setting to "false" in many places in the documentation
code snippets. Most of the places can simply be reverted without causing errors.
In this change I looked for asciidoc files that contained the
"include_type_name=true" addition when creating new indices but didn't look
likey they made use of the "_doc" type for mappings. This is mostly the case
e.g. in the analysis docs where index creating often only contains settings. I
manually corrected the use of types in some places where the docs still used an
explicit type name and not the dummy "_doc" type.
* Default include_type_name to false for get and put mappings.
* Default include_type_name to false for get field mappings.
* Add a constant for the default include_type_name value.
* Default include_type_name to false for get and put index templates.
* Default include_type_name to false for create index.
* Update create index calls in REST documentation to use include_type_name=true.
* Some minor clean-ups around the get index API.
* In REST tests, use include_type_name=true by default for index creation.
* Make sure to use 'expression == false'.
* Clarify the different IndexTemplateMetaData toXContent methods.
* Fix FullClusterRestartIT#testSnapshotRestore.
* Fix the ml_anomalies_default_mappings test.
* Fix GetFieldMappingsResponseTests and GetIndexTemplateResponseTests.
We make sure to specify include_type_name=true during xContent parsing,
so we continue to test the legacy typed responses. XContent generation
for the typeless responses is currently only covered by REST tests,
but we will be adding unit test coverage for these as we implement
each typeless API in the Java HLRC.
This commit also refactors GetMappingsResponse to follow the same appraoch
as the other mappings-related responses, where we read include_type_name
out of the xContent params, instead of creating a second toXContent method.
This gives better consistency in the response parsing code.
* Fix more REST tests.
* Improve some wording in the create index documentation.
* Add a note about types removal in the create index docs.
* Fix SmokeTestMonitoringWithSecurityIT#testHTTPExporterWithSSL.
* Make sure to mention include_type_name in the REST docs for affected APIs.
* Make sure to use 'expression == false' in FullClusterRestartIT.
* Mention include_type_name in the REST templates docs.
Adds an example on translating geohashes returned by geohashgrid
agg as bucket keys into geo bounding box filters in elasticsearch as well
as 3rd party applications.
Closes#36413
When executing terms aggregations we set the shard_size, meaning the
number of buckets to collect on each shard, to a value that's higher than
the number of requested buckets, to guarantee some basic level of
precision. We have an optimization in place so that we leave shard_size
set to size whenever we are searching against a single shard, in which
case maximum precision is guaranteed by definition.
Such optimization requires us access to the total number of shards that
the search is executing against. In the context of cross-cluster search,
once we will introduce multiple reduction steps (one per cluster) each
cluster will only know the number of local shards, which is problematic
as we should only optimize if we are searching against a single shard in a
single cluster. It could be that we are searching against one shard per cluster
in which case the current code would optimize number of terms causing
a loss of precision.
While discussing how to address the CCS scenario, we decided that we do
not want to introduce further complexity caused by this single shard
optimization, as it benefits only a minority of cases, especially when
the benefits are not so great.
This commit removes the single shard optimization, meaning that we will
always have heuristic enabled on how many number of buckets to collect
on the shards, even when searching against a single shard.
This will cause more buckets to be collected when searching against a single
shard compared to before. If that becomes a problem for some users, they
can work around that by setting the shard_size equal to the size.
Relates to #32125
This commit changes the format of the `hits.total` in the search response to be an object with
a `value` and a `relation`. The `value` indicates the number of hits that match the query and the
`relation` indicates whether the number is accurate (in which case the relation is equals to `eq`)
or a lower bound of the total (in which case it is equals to `gte`).
This change also adds a parameter called `rest_total_hits_as_int` that can be used in the
search APIs to opt out from this change (retrieve the total hits as a number in the rest response).
Note that currently all search responses are accurate (`track_total_hits: true`) or they don't contain
`hits.total` (`track_total_hits: true`). We'll add a way to get a lower bound of the total hits in a
follow up (to allow numbers to be passed to `track_total_hits`).
Relates #33028
`ScriptDocValues#getValues` was added for backwards compatibility but no
longer needed. Scripts using the syntax `doc['foo'].values` when
`doc['foo']` is a list should be using `doc['foo']` instead.
Closes#22919