Check it out:
```
$ curl -u elastic:password -HContent-Type:application/json -XPOST localhost:9200/test/_update/foo?pretty -d'{
"dac": {}
}'
{
"error" : {
"root_cause" : [
{
"type" : "x_content_parse_exception",
"reason" : "[2:3] [UpdateRequest] unknown field [dac] did you mean [doc]?"
}
],
"type" : "x_content_parse_exception",
"reason" : "[2:3] [UpdateRequest] unknown field [dac] did you mean [doc]?"
},
"status" : 400
}
```
The tricky thing about implementing this is that x-content doesn't
depend on Lucene. So this works by creating an extension point for the
error message using SPI. Elasticsearch's server module provides the
"spell checking" implementation.
s
* [ML][Inference] Adding classification_weights to ensemble models
classification_weights are a way to allow models to
prefer specific classification results over others
this might be advantageous if classification value
probabilities are a known quantity and can improve
model error rates.
In classes where the client is used directly rather than through a call to
executeAsyncWithOrigin explicitly require the client to be OriginSettingClient
rather than using the Client interface.
Also remove calls to deprecated ClientHelper.clientWithOrigin() method.
Adds a new parameter to regression and classification that enables computation
of importance for the top most important features. The computation of the importance
is based on SHAP (SHapley Additive exPlanations) method.
Backport of #50914
The system created and models we provide now use the `_xpack` user for uniformity with our other features
The `PUT` action is now an admin cluster action
And XPackClient class now references the action instance.
* [ML][Inference] PUT API (#50852)
This adds the `PUT` API for creating trained models that support our format.
This includes
* HLRC change for the API
* API creation
* Validations of model format and call
* fixing backport
This commit removes validation logic of source and dest indices
for data frame analytics and replaces it with using the common
`SourceDestValidator` class which is already used by transforms.
This way the validations and their messages become consistent
while we reduce code.
This means that where these validations fail the error messages
will be slightly different for data frame analytics.
Backport of #50841
A very large number of recursive calls can cause a stack overflow
exception. This commit forks the recursive calls for non-async
processors. Once forked, each thread will handle at most 10
recursive calls to help keep the stack size and thread count
down to a reasonable size.
This adds the necessary named XContent classes to the HLRC for the lang ident model. This is so the HLRC can call `GET _ml/inference/lang_ident_model_1?include_definition=true` without XContent parsing errors.
The constructors are package private as since this classes are used exclusively within the pre-packaged model (and require the specific weights, etc. to be of any use).
This PR adds per-field metadata that can be set in the mappings and is later
returned by the field capabilities API. This metadata is completely opaque to
Elasticsearch but may be used by tools that index data in Elasticsearch to
communicate metadata about fields with tools that then search this data. A
typical example that has been requested in the past is the ability to attach
a unit to a numeric field.
In order to not bloat the cluster state, Elasticsearch requires that this
metadata be small:
- keys can't be longer than 20 chars,
- values can only be numbers or strings of no more than 50 chars - no inner
arrays or objects,
- the metadata can't have more than 5 keys in total.
Given that metadata is opaque to Elasticsearch, field capabilities don't try to
do anything smart when merging metadata about multiple indices, the union of
all field metadatas is returned.
Here is how the meta might look like in mappings:
```json
{
"properties": {
"latency": {
"type": "long",
"meta": {
"unit": "ms"
}
}
}
}
```
And then in the field capabilities response:
```json
{
"latency": {
"long": {
"searchable": true,
"aggreggatable": true,
"meta": {
"unit": [ "ms" ]
}
}
}
}
```
When there are no conflicts, values are arrays of size 1, but when there are
conflicts, Elasticsearch includes all unique values in this array, without
giving ways to know which index has which metadata value:
```json
{
"latency": {
"long": {
"searchable": true,
"aggreggatable": true,
"meta": {
"unit": [ "ms", "ns" ]
}
}
}
}
```
Closes#33267
Switch from a 32 bit Java hash to a 128 bit Murmur hash for
creating document IDs from by/over/partition field values.
The 32 bit Java hash was not sufficiently unique, and could
produce identical numbers for relatively common combinations
of by/partition field values such as L018/128 and L017/228.
Fixes#50613
The end offset of a tokenizer is supposed to point one past the
end of the input, not to the end character of the input. The
ml_classic tokenizer was erroneously doing the latter.
Sharing a random generator may cause test failures as non-threadsafe random generators are periodically utilized in tests (see: https://github.com/elastic/elasticsearch/issues/50651)
This change constructs a calls `Randomness.get()` within the `bulkIndexWithRetry` method so that the returned `Random` object is only used in a single thread. Before, the member variable could have been used between threads, which caused test failures.
* [ML][Inference] lang_ident model (#50292)
This PR contains a java port of Google's CLD3 compact NN model https://github.com/google/cld3
The ported model is formatted to fit within our inference model formatting and stored as a resource in the `:xpack:ml:` plugin and is under basic license.
The model is broken up into two major parts:
- Preprocessing through the custom embedding (based on CLD3's embedding layer)
- Pushing the embedded text through the two layers of fully connected shallow NN.
Main differences between this port and CLD3:
- We take advantage of Java's internal Unicode handling where possible (i.e. codepoints, characters, decoders, etc.)
- We do not trim down input text by removing duplicated tokens
- We do not encode doubles/floats as longs/integers.
Adds a `force` parameter to the delete data frame analytics
request. When `force` is `true`, the action force-stops the
jobs and then proceeds to the deletion. This can be used in
order to delete a non-stopped job with a single request.
Closes#48124
Backport of #50553
Eclipse 4.13 shows a type mismatch error in the affected line because it cannot
correctly infer the boolean return type for the method call. Assigning return
value to a local variable resolves this problem.
In order to ensure any persisted model state is searchable by the moment
the job reports itself as `stopped`, we need to refresh the state index
before completing.
This should fix the occasional failures we see in #50168 and #50313 where
the model state appears missing.
Closes#50168Closes#50313
Backport of #50322
This fixes support for nested fields
We now support fully nested, fully collapsed, or a mix of both on inference docs.
ES mappings allow the `_source` to be any combination of nested objects + dot delimited fields.
So, we should do our best to find the best path down the Map for the desired field.
This commit adds removal of unused data frame analytics state
from the _delete_expired_data API (and in extend th ML daily
maintenance task). At the moment the potential state docs
include the progress document and state for regression and
classification analyses.
Backport of #50243
Executing the data frame analytics _explain API with a config that contains
a field that is not in the includes list but at the same time is the excludes
list results to trying to remove the field twice from the iterator. That causes
an `IllegalStateException`. This commit fixes this issue and adds a test that
captures the scenario.
Backport of #50192
This adds a new field for the inference processor.
`warning_field` is a place for us to write warnings provided from the inference call. When there are warnings we are not going to write an inference result. The goal of this is to indicate that the data provided was too poor or too different for the model to make an accurate prediction.
The user could optionally include the `warning_field`. When it is not provided, it is assumed no warnings were desired to be written.
The first of these warnings is when ALL of the input fields are missing. If none of the trained fields are present, we don't bother inferencing against the model and instead provide a warning stating that the fields were missing.
Also, this adds checks to not allow duplicated fields during processor creation.
This exchanges the direct use of the `Client` for `ResultsPersisterService`. State doc persistence will now retry. Failures to persist state will still not throw, but will be audited and logged.
This commit fixes a bug that caused the data frame analytics
_explain API to time out in a multi-node setup when the source
index was missing. When we try to create the extracted fields detector,
we check the index settings. If the index is missing that responds
with a failure that could be wrapped as a remote exception.
While we unwrapped correctly to check if the cause was an
`IndexNotFoundException`, we then proceeded to cast the original
exception instead of the cause.
Backport of #50176
* [ML] Add graceful retry for anomaly detector result indexing failures (#49508)
All results indexing now retry the amount of times configured in `xpack.ml.persist_results_max_retries`. The retries are done in a semi-random, exponential backoff.
* fixing test
The `ClassificationIT.testTwoJobsWithSameRandomizeSeedUseSameTrainingSet`
test was previously set up to just have 10 rows. With `training_percent`
of 50%, only 5 rows will be used for training. There is a good chance that
all 5 rows will be of one class which results to failure.
This commit increases the rows to 100. Now 50 rows should be used for training
and the chance of failure should be very small.
Backport of #50072
Adjusts the subclasses of `TransportMasterNodeAction` to use their own loggers
instead of the one for the base class.
Relates #50056.
Partial backport of #46431 to 7.x.
This adds a new `randomize_seed` for regression and classification.
When not explicitly set, the seed is randomly generated. One can
reuse the seed in a similar job in order to ensure the same docs
are picked for training.
Backport of #49990
When checking the cardinality of a field, the query should be take into account. The user might know about some bad data in their index and want to filter down to the target_field values they care about.
Work in progress in the c++ side is increasing memory estimates
a bit and this test fails. At the time of this commit the mem
estimate when there is no source query is a about 2Mb. So I
am relaxing the test to assert memory estimate is less than 1Mb
instead of 500Kb.
Backport of #49924