15 Commits

Author SHA1 Message Date
Przemysław Witek
bd761cce1d
[ML] Validate that AucRoc has the data necessary to be calculated (#63302) (#63454) 2020-10-08 09:52:15 +02:00
Lisa Cawley
4de6104dae
[DOCS] Fix titles for ML APIs (#63152) (#63207) 2020-10-02 14:01:01 -07:00
Lisa Cawley
57ea5d27ae [DOCS] Add experimental tag to data frame analytics APIs (#63153) 2020-10-02 09:44:40 -07:00
Przemysław Witek
d677a2b8ee
[7.x] [ML] Implement AucRoc metric for classification - HLRC (#62304) (#63058) 2020-09-30 14:04:10 +02:00
James Rodewig
60876a0e32
[DOCS] Replace Wikipedia links with attribute (#61171) (#61209) 2020-08-17 11:27:04 -04:00
Przemysław Witek
283a1f605c
Rename binary_soft_classification evaluation to outlier_detection (#59951) (#59970) 2020-07-21 15:15:04 +02:00
Przemysław Witek
909649dd15
[7.x] Implement pseudo Huber loss (PseudoHuber) evaluation metric for regression analysis (#58734) (#58825) 2020-07-01 14:52:06 +02:00
Przemysław Witek
9ea9b7bd3b
[7.x] Implement MSLE (MeanSquaredLogarithmicError) evaluation metric for regression analysis (#58684) (#58731) 2020-06-30 14:09:11 +02:00
Przemysław Witek
cc4bc797f9
[7.x] Implement precision and recall metrics for classification evaluation (#49671) (#50378) 2019-12-19 18:55:05 +01:00
Przemysław Witek
c7ac2011eb
[7.x] Implement accuracy metric for multiclass classification (#47772) (#49430) 2019-11-21 15:01:18 +01:00
Przemysław Witek
d210bfa888
[7.x] Add MlClientDocumentationIT tests for classification. (#47569) (#47896) 2019-10-11 10:19:55 +02:00
Lisa Cawley
d62e1a3d8b [DOCS] Fixes data frame analytics job terminology in HLRC (#46758) 2019-09-16 10:07:59 -07:00
Lisa Cawley
7461259ba6 [DOCS] Adds missing icons to ML HLRC APIs (#46515) 2019-09-10 08:28:02 -07:00
Przemysław Witek
7512337922
[7.x] Allow the user to specify 'query' in Evaluate Data Frame request (#45775) (#45825) 2019-08-22 11:14:26 +02:00
Dimitris Athanasiou
126c2fd2d5
[7.x][ML] Machine learning data frame analytics (#43544) (#43592)
This merges the initial work that adds a framework for performing
machine learning analytics on data frames. The feature is currently experimental
and requires a platinum license. Note that the original commits can be
found in the `feature-ml-data-frame-analytics` branch.

A new set of APIs is added which allows the creation of data frame analytics
jobs. Configuration allows specifying different types of analysis to be performed
on a data frame. At first there is support for outlier detection.

The APIs are:

- PUT _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}
- GET _ml/data_frame/analysis/{id}/_stats
- POST _ml/data_frame/analysis/{id}/_start
- POST _ml/data_frame/analysis/{id}/_stop
- DELETE _ml/data_frame/analysis/{id}

When a data frame analytics job is started a persistent task is created and started.
The main steps of the task are:

1. reindex the source index into the dest index
2. analyze the data through the data_frame_analyzer c++ process
3. merge the results of the process back into the destination index

In addition, an evaluation API is added which packages commonly used metrics
that provide evaluation of various analysis:

- POST _ml/data_frame/_evaluate
2019-06-25 20:29:11 +03:00