[role="xpack"] [testenv="platinum"] [[evaluate-dfanalytics]] === Evaluate {dfanalytics} API [subs="attributes"] ++++ Evaluate {dfanalytics} ++++ Evaluates the {dfanalytics} for an annotated index. experimental[] [[ml-evaluate-dfanalytics-request]] ==== {api-request-title} `POST _ml/data_frame/_evaluate` [[ml-evaluate-dfanalytics-prereq]] ==== {api-prereq-title} * You must have `monitor_ml` privilege to use this API. For more information, see {stack-ov}/security-privileges.html[Security privileges] and {stack-ov}/built-in-roles.html[Built-in roles]. [[ml-evaluate-dfanalytics-desc]] ==== {api-description-title} This API evaluates the executed analysis on an index that is already annotated with a field that contains the results of the analytics (the `ground truth`) for each {dataframe} row. Evaluation is typically done by calculating a set of metrics that capture various aspects of the quality of the results over the data for which you have the `ground truth`. For different types of analyses different metrics are suitable. This API packages together commonly used metrics for various analyses. [[ml-evaluate-dfanalytics-request-body]] ==== {api-request-body-title} `index`:: (Required, object) Defines the `index` in which the evaluation will be performed. `query`:: (Optional, object) Query used to select data from the index. The {es} query domain-specific language (DSL). This value corresponds to the query object in an {es} search POST body. By default, this property has the following value: `{"match_all": {}}`. `evaluation`:: (Required, object) Defines the type of evaluation you want to perform. For example: `binary_soft_classification`. See <>. //// [[ml-evaluate-dfanalytics-results]] ==== {api-response-body-title} `binary_soft_classification`:: (object) If you chose to do binary soft classification, the API returns the following evaluation metrics: `auc_roc`::: TBD `confusion_matrix`::: TBD `precision`::: TBD `recall`::: TBD //// [[ml-evaluate-dfanalytics-example]] ==== {api-examples-title} [source,js] -------------------------------------------------- POST _ml/data_frame/_evaluate { "index": "my_analytics_dest_index", "evaluation": { "binary_soft_classification": { "actual_field": "is_outlier", "predicted_probability_field": "ml.outlier_score" } } } -------------------------------------------------- // CONSOLE // TEST[skip:TBD] The API returns the following results: [source,js] ---- { "binary_soft_classification": { "auc_roc": { "score": 0.92584757746414444 }, "confusion_matrix": { "0.25": { "tp": 5, "fp": 9, "tn": 204, "fn": 5 }, "0.5": { "tp": 1, "fp": 5, "tn": 208, "fn": 9 }, "0.75": { "tp": 0, "fp": 4, "tn": 209, "fn": 10 } }, "precision": { "0.25": 0.35714285714285715, "0.5": 0.16666666666666666, "0.75": 0 }, "recall": { "0.25": 0.5, "0.5": 0.1, "0.75": 0 } } } ---- // TESTRESPONSE