[role="xpack"] [testenv="basic"] [[get-inference-stats]] === Get {infer} trained model statistics API [subs="attributes"] ++++ Get {infer} trained model stats ++++ Retrieves usage information for trained {infer} models. experimental[] [[ml-get-inference-stats-request]] ==== {api-request-title} `GET _ml/inference/_stats` + `GET _ml/inference/_all/_stats` + `GET _ml/inference//_stats` + `GET _ml/inference/,/_stats` + `GET _ml/inference/,/_stats` [[ml-get-inference-stats-prereq]] ==== {api-prereq-title} Required privileges which should be added to a custom role: * cluster: `monitor_ml` For more information, see <> and <>. [[ml-get-inference-stats-desc]] ==== {api-description-title} You can get usage information for multiple trained models in a single API request by using a comma-separated list of model IDs or a wildcard expression. [[ml-get-inference-stats-path-params]] ==== {api-path-parms-title} ``:: (Optional, string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=model-id] [[ml-get-inference-stats-query-params]] ==== {api-query-parms-title} `allow_no_match`:: (Optional, boolean) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=allow-no-match] `from`:: (Optional, integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=from] `size`:: (Optional, integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=size] [[ml-get-inference-stats-response-codes]] ==== {api-response-codes-title} `404` (Missing resources):: If `allow_no_match` is `false`, this code indicates that there are no resources that match the request or only partial matches for the request. [[ml-get-inference-stats-example]] ==== {api-examples-title} The following example gets usage information for all the trained models: [source,console] -------------------------------------------------- GET _ml/inference/_stats -------------------------------------------------- // TEST[skip:TBD] The API returns the following results: [source,console-result] ---- { "count": 2, "trained_model_stats": [ { "model_id": "flight-delay-prediction-1574775339910", "pipeline_count": 0 }, { "model_id": "regression-job-one-1574775307356", "pipeline_count": 1, "ingest": { "total": { "count": 178, "time_in_millis": 8, "current": 0, "failed": 0 }, "pipelines": { "flight-delay": { "count": 178, "time_in_millis": 8, "current": 0, "failed": 0, "processors": [ { "inference": { "type": "inference", "stats": { "count": 178, "time_in_millis": 7, "current": 0, "failed": 0 } } } ] } } } } ] } ---- // NOTCONSOLE