tag::aggregations[] If set, the {dfeed} performs aggregation searches. Support for aggregations is limited and should be used only with low cardinality data. For more information, see {ml-docs}/ml-configuring-aggregation.html[Aggregating data for faster performance]. end::aggregations[] tag::allow-lazy-open[] Advanced configuration option. Specifies whether this job can open when there is insufficient {ml} node capacity for it to be immediately assigned to a node. The default value is `false`; if a {ml} node with capacity to run the job cannot immediately be found, the <> returns an error. However, this is also subject to the cluster-wide `xpack.ml.max_lazy_ml_nodes` setting; see <>. If this option is set to `true`, the <> does not return an error and the job waits in the `opening` state until sufficient {ml} node capacity is available. end::allow-lazy-open[] tag::allow-no-datafeeds[] Specifies what to do when the request: + -- * Contains wildcard expressions and there are no {dfeeds} that match. * Contains the `_all` string or no identifiers and there are no matches. * Contains wildcard expressions and there are only partial matches. The default value is `true`, which returns an empty `datafeeds` array when there are no matches and the subset of results when there are partial matches. If this parameter is `false`, the request returns a `404` status code when there are no matches or only partial matches. -- end::allow-no-datafeeds[] tag::allow-no-jobs[] Specifies what to do when the request: + -- * Contains wildcard expressions and there are no jobs that match. * Contains the `_all` string or no identifiers and there are no matches. * Contains wildcard expressions and there are only partial matches. The default value is `true`, which returns an empty `jobs` array when there are no matches and the subset of results when there are partial matches. If this parameter is `false`, the request returns a `404` status code when there are no matches or only partial matches. -- end::allow-no-jobs[] tag::allow-no-match[] Specifies what to do when the request: + -- * Contains wildcard expressions and there are no {dfanalytics-jobs} that match. * Contains the `_all` string or no identifiers and there are no matches. * Contains wildcard expressions and there are only partial matches. The default value is `true`, which returns an empty `data_frame_analytics` array when there are no matches and the subset of results when there are partial matches. If this parameter is `false`, the request returns a `404` status code when there are no matches or only partial matches. -- end::allow-no-match[] tag::allow-no-match-models[] Specifies what to do when the request: + -- * Contains wildcard expressions and there are no models that match. * Contains the `_all` string or no identifiers and there are no matches. * Contains wildcard expressions and there are only partial matches. The default value is `true`, which returns an empty array when there are no matches and the subset of results when there are partial matches. If this parameter is `false`, the request returns a `404` status code when there are no matches or only partial matches. -- end::allow-no-match-models[] tag::analysis[] Defines the type of {dfanalytics} you want to perform on your source index. For example: `outlier_detection`. See <>. end::analysis[] tag::analysis-config[] The analysis configuration, which specifies how to analyze the data. After you create a job, you cannot change the analysis configuration; all the properties are informational. end::analysis-config[] tag::analysis-limits[] Limits can be applied for the resources required to hold the mathematical models in memory. These limits are approximate and can be set per job. They do not control the memory used by other processes, for example the {es} Java processes. end::analysis-limits[] tag::assignment-explanation-anomaly-jobs[] For open {anomaly-jobs} only, contains messages relating to the selection of a node to run the job. end::assignment-explanation-anomaly-jobs[] tag::assignment-explanation-datafeeds[] For started {dfeeds} only, contains messages relating to the selection of a node. end::assignment-explanation-datafeeds[] tag::assignment-explanation-dfanalytics[] Contains messages relating to the selection of a node. end::assignment-explanation-dfanalytics[] tag::background-persist-interval[] Advanced configuration option. The time between each periodic persistence of the model. The default value is a randomized value between 3 to 4 hours, which avoids all jobs persisting at exactly the same time. The smallest allowed value is 1 hour. + -- TIP: For very large models (several GB), persistence could take 10-20 minutes, so do not set the `background_persist_interval` value too low. -- end::background-persist-interval[] tag::bucket-allocation-failures-count[] The number of buckets for which new entities in incoming data were not processed due to insufficient model memory. This situation is also signified by a `hard_limit: memory_status` property value. end::bucket-allocation-failures-count[] tag::bucket-count[] The number of buckets processed. end::bucket-count[] tag::bucket-count-anomaly-jobs[] The number of bucket results produced by the job. end::bucket-count-anomaly-jobs[] tag::bucket-span[] The size of the interval that the analysis is aggregated into, typically between `5m` and `1h`. The default value is `5m`. If the {anomaly-job} uses a {dfeed} with {ml-docs}/ml-configuring-aggregation.html[aggregations], this value must be divisible by the interval of the date histogram aggregation. For more information, see {ml-docs}/ml-buckets.html[Buckets]. end::bucket-span[] tag::bucket-span-results[] The length of the bucket in seconds. This value matches the `bucket_span` that is specified in the job. end::bucket-span-results[] tag::bucket-time-exponential-average[] Exponential moving average of all bucket processing times, in milliseconds. end::bucket-time-exponential-average[] tag::bucket-time-exponential-average-hour[] Exponentially-weighted moving average of bucket processing times calculated in a 1 hour time window, in milliseconds. end::bucket-time-exponential-average-hour[] tag::bucket-time-maximum[] Maximum among all bucket processing times, in milliseconds. end::bucket-time-maximum[] tag::bucket-time-minimum[] Minimum among all bucket processing times, in milliseconds. end::bucket-time-minimum[] tag::bucket-time-total[] Sum of all bucket processing times, in milliseconds. end::bucket-time-total[] tag::by-field-name[] The field used to split the data. In particular, this property is used for analyzing the splits with respect to their own history. It is used for finding unusual values in the context of the split. end::by-field-name[] tag::calendar-id[] A string that uniquely identifies a calendar. end::calendar-id[] tag::categorization-analyzer[] If `categorization_field_name` is specified, you can also define the analyzer that is used to interpret the categorization field. This property cannot be used at the same time as `categorization_filters`. The categorization analyzer specifies how the categorization field is interpreted by the categorization process. The syntax is very similar to that used to define the `analyzer` in the <>. For more information, see {ml-docs}/ml-configuring-categories.html[Categorizing log messages]. + The `categorization_analyzer` field can be specified either as a string or as an object. If it is a string it must refer to a <> or one added by another plugin. If it is an object it has the following properties: + .Properties of `categorization_analyzer` [%collapsible%open] ===== `char_filter`:::: (array of strings or objects) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=char-filter] `tokenizer`:::: (string or object) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=tokenizer] `filter`:::: (array of strings or objects) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=filter] ===== end::categorization-analyzer[] tag::categorization-examples-limit[] The maximum number of examples stored per category in memory and in the results data store. The default value is `4`. If you increase this value, more examples are available, however it requires that you have more storage available. If you set this value to `0`, no examples are stored. + NOTE: The `categorization_examples_limit` only applies to analysis that uses categorization. For more information, see {ml-docs}/ml-configuring-categories.html[Categorizing log messages]. end::categorization-examples-limit[] tag::categorization-field-name[] If this property is specified, the values of the specified field will be categorized. The resulting categories must be used in a detector by setting `by_field_name`, `over_field_name`, or `partition_field_name` to the keyword `mlcategory`. For more information, see {ml-docs}/ml-configuring-categories.html[Categorizing log messages]. end::categorization-field-name[] tag::categorization-filters[] If `categorization_field_name` is specified, you can also define optional filters. This property expects an array of regular expressions. The expressions are used to filter out matching sequences from the categorization field values. You can use this functionality to fine tune the categorization by excluding sequences from consideration when categories are defined. For example, you can exclude SQL statements that appear in your log files. For more information, see {ml-docs}/ml-configuring-categories.html[Categorizing log messages]. This property cannot be used at the same time as `categorization_analyzer`. If you only want to define simple regular expression filters that are applied prior to tokenization, setting this property is the easiest method. If you also want to customize the tokenizer or post-tokenization filtering, use the `categorization_analyzer` property instead and include the filters as `pattern_replace` character filters. The effect is exactly the same. end::categorization-filters[] tag::categorization-status[] The status of categorization for the job. Contains one of the following values: + -- * `ok`: Categorization is performing acceptably well (or not being used at all). * `warn`: Categorization is detecting a distribution of categories that suggests the input data is inappropriate for categorization. Problems could be that there is only one category, more than 90% of categories are rare, the number of categories is greater than 50% of the number of categorized documents, there are no frequently matched categories, or more than 50% of categories are dead. -- end::categorization-status[] tag::categorized-doc-count[] The number of documents that have had a field categorized. end::categorized-doc-count[] tag::char-filter[] One or more <>. In addition to the built-in character filters, other plugins can provide more character filters. This property is optional. If it is not specified, no character filters are applied prior to categorization. If you are customizing some other aspect of the analyzer and you need to achieve the equivalent of `categorization_filters` (which are not permitted when some other aspect of the analyzer is customized), add them here as <>. end::char-filter[] tag::chunking-config[] {dfeeds-cap} might be required to search over long time periods, for several months or years. This search is split into time chunks in order to ensure the load on {es} is managed. Chunking configuration controls how the size of these time chunks are calculated and is an advanced configuration option. + .Properties of `chunking_config` [%collapsible%open] ==== `mode`::: (string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=mode] `time_span`::: (<>) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=time-span] ==== end::chunking-config[] tag::class-assignment-objective[] Defines the objective to optimize when assigning class labels: `maximize_accuracy` or `maximize_minimum_recall`. When maximizing accuracy, class labels are chosen to maximize the number of correct predictions. When maximizing minimum recall, labels are chosen to maximize the minimum recall for any class. Defaults to `maximize_minimum_recall`. end::class-assignment-objective[] tag::compute-feature-influence[] Specifies whether the feature influence calculation is enabled. Defaults to `true`. end::compute-feature-influence[] tag::custom-preprocessor[] (Optional, Boolean) Boolean value indicating if the analytics job created the preprocessor or if a user provided it. This adjusts the feature importance calculation. When `true`, the feature importance calculation returns importance for the processed feature. When `false`, the total importance of the original field is returned. Default is `false`. end::custom-preprocessor[] tag::custom-rules[] An array of custom rule objects, which enable you to customize the way detectors operate. For example, a rule may dictate to the detector conditions under which results should be skipped. For more examples, see {ml-docs}/ml-configuring-detector-custom-rules.html[Customizing detectors with custom rules]. end::custom-rules[] tag::custom-rules-actions[] The set of actions to be triggered when the rule applies. If more than one action is specified the effects of all actions are combined. The available actions include: * `skip_result`: The result will not be created. This is the default value. Unless you also specify `skip_model_update`, the model will be updated as usual with the corresponding series value. * `skip_model_update`: The value for that series will not be used to update the model. Unless you also specify `skip_result`, the results will be created as usual. This action is suitable when certain values are expected to be consistently anomalous and they affect the model in a way that negatively impacts the rest of the results. end::custom-rules-actions[] tag::custom-rules-scope[] An optional scope of series where the rule applies. A rule must either have a non-empty scope or at least one condition. By default, the scope includes all series. Scoping is allowed for any of the fields that are also specified in `by_field_name`, `over_field_name`, or `partition_field_name`. To add a scope for a field, add the field name as a key in the scope object and set its value to an object with the following properties: end::custom-rules-scope[] tag::custom-rules-scope-filter-id[] The id of the filter to be used. end::custom-rules-scope-filter-id[] tag::custom-rules-scope-filter-type[] Either `include` (the rule applies for values in the filter) or `exclude` (the rule applies for values not in the filter). Defaults to `include`. end::custom-rules-scope-filter-type[] tag::custom-rules-conditions[] An optional array of numeric conditions when the rule applies. A rule must either have a non-empty scope or at least one condition. Multiple conditions are combined together with a logical `AND`. A condition has the following properties: end::custom-rules-conditions[] tag::custom-rules-conditions-applies-to[] Specifies the result property to which the condition applies. The available options are `actual`, `typical`, `diff_from_typical`, `time`. If your detector uses `lat_long`, `metric`, `rare`, or `freq_rare` functions, you can only specify conditions that apply to `time`. end::custom-rules-conditions-applies-to[] tag::custom-rules-conditions-operator[] Specifies the condition operator. The available options are `gt` (greater than), `gte` (greater than or equals), `lt` (less than) and `lte` (less than or equals). end::custom-rules-conditions-operator[] tag::custom-rules-conditions-value[] The value that is compared against the `applies_to` field using the `operator`. end::custom-rules-conditions-value[] tag::custom-settings[] Advanced configuration option. Contains custom meta data about the job. For example, it can contain custom URL information as shown in {ml-docs}/ml-configuring-url.html[Adding custom URLs to {ml} results]. end::custom-settings[] tag::daily-model-snapshot-retention-after-days[] Advanced configuration option, which affects the automatic removal of old model snapshots for this job. It specifies a period of time (in days) after which only the first snapshot per day is retained. This period is relative to the timestamp of the most recent snapshot for this job. Valid values range from `0` to `model_snapshot_retention_days`. For new jobs, the default value is `1`. For jobs created before version 7.8.0, the default value matches `model_snapshot_retention_days`. For more information, refer to {ml-docs}/ml-model-snapshots.html[Model snapshots]. end::daily-model-snapshot-retention-after-days[] tag::data-description[] The data description defines the format of the input data when you send data to the job by using the <> API. Note that when configure a {dfeed}, these properties are automatically set. When data is received via the <> API, it is not stored in {es}. Only the results for {anomaly-detect} are retained. + .Properties of `data_description` [%collapsible%open] ==== `format`::: (string) Only `JSON` format is supported at this time. `time_field`::: (string) The name of the field that contains the timestamp. The default value is `time`. `time_format`::: (string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=time-format] ==== end::data-description[] tag::datafeed-id[] A numerical character string that uniquely identifies the {dfeed}. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. end::datafeed-id[] tag::datafeed-id-wildcard[] Identifier for the {dfeed}. It can be a {dfeed} identifier or a wildcard expression. end::datafeed-id-wildcard[] tag::dead-category-count[] The number of categories created by categorization that will never be assigned again because another category's definition makes it a superset of the dead category. (Dead categories are a side effect of the way categorization has no prior training.) end::dead-category-count[] tag::delayed-data-check-config[] Specifies whether the {dfeed} checks for missing data and the size of the window. For example: `{"enabled": true, "check_window": "1h"}`. + The {dfeed} can optionally search over indices that have already been read in an effort to determine whether any data has subsequently been added to the index. If missing data is found, it is a good indication that the `query_delay` option is set too low and the data is being indexed after the {dfeed} has passed that moment in time. See {ml-docs}/ml-delayed-data-detection.html[Working with delayed data]. + This check runs only on real-time {dfeeds}. + .Properties of `delayed_data_check_config` [%collapsible%open] ==== `check_window`:: (<>) The window of time that is searched for late data. This window of time ends with the latest finalized bucket. It defaults to `null`, which causes an appropriate `check_window` to be calculated when the real-time {dfeed} runs. In particular, the default `check_window` span calculation is based on the maximum of `2h` or `8 * bucket_span`. `enabled`:: (Boolean) Specifies whether the {dfeed} periodically checks for delayed data. Defaults to `true`. ==== end::delayed-data-check-config[] tag::dependent-variable[] Defines which field of the document is to be predicted. This parameter is supplied by field name and must match one of the fields in the index being used to train. If this field is missing from a document, then that document will not be used for training, but a prediction with the trained model will be generated for it. It is also known as continuous target variable. end::dependent-variable[] tag::desc-results[] If true, the results are sorted in descending order. end::desc-results[] tag::description-dfa[] A description of the job. end::description-dfa[] tag::dest[] The destination configuration, consisting of `index` and optionally `results_field` (`ml` by default). + .Properties of `dest` [%collapsible%open] ==== `index`::: (Required, string) Defines the _destination index_ to store the results of the {dfanalytics-job}. `results_field`::: (Optional, string) Defines the name of the field in which to store the results of the analysis. Defaults to `ml`. ==== end::dest[] tag::detector-description[] A description of the detector. For example, `Low event rate`. end::detector-description[] tag::detector-field-name[] The field that the detector uses in the function. If you use an event rate function such as `count` or `rare`, do not specify this field. + -- NOTE: The `field_name` cannot contain double quotes or backslashes. -- end::detector-field-name[] tag::detector-index[] A unique identifier for the detector. This identifier is based on the order of the detectors in the `analysis_config`, starting at zero. end::detector-index[] tag::dfas-alpha[] Regularization factor to penalize deeper trees when training decision trees. end::dfas-alpha[] tag::dfas-downsample-factor[] The value of the downsample factor. end::dfas-downsample-factor[] tag::dfas-eta-growth[] Specifies the rate at which the `eta` increases for each new tree that is added to the forest. For example, a rate of `1.05` increases `eta` by 5%. end::dfas-eta-growth[] tag::dfas-feature-processors[] A collection of feature preprocessors that modify one or more included fields. The analysis uses the resulting one or more features instead of the original document field. Multiple `feature_processors` entries can refer to the same document fields. Note, automatic categorical {ml-docs}/ml-feature-encoding.html[feature encoding] still occurs. end::dfas-feature-processors[] tag::dfas-iteration[] The number of iterations on the analysis. end::dfas-iteration[] tag::dfas-max-attempts[] If the algorithm fails to determine a non-trivial tree (more than a single leaf), this parameter determines how many of such consecutive failures are tolerated. Once the number of attempts exceeds the threshold, the forest training stops. end::dfas-max-attempts[] tag::dfas-max-optimization-rounds[] A multiplier responsible for determining the maximum number of hyperparameter optimization steps in the Bayesian optimization procedure. The maximum number of steps is determined based on the number of undefined hyperparameters times the maximum optimization rounds per hyperparameter. end::dfas-max-optimization-rounds[] tag::dfas-num-folds[] The maximum number of folds for the cross-validation procedure. end::dfas-num-folds[] tag::dfas-num-splits[] Determines the maximum number of splits for every feature that can occur in a decision tree when the tree is trained. end::dfas-num-splits[] tag::dfas-soft-limit[] Tree depth limit is used for calculating the tree depth penalty. This is a soft limit, it can be exceeded. end::dfas-soft-limit[] tag::dfas-soft-tolerance[] Tree depth tolerance is used for calculating the tree depth penalty. This is a soft limit, it can be exceeded. end::dfas-soft-tolerance[] tag::dfas-timestamp[] The timestamp when the statistics were reported in milliseconds since the epoch. end::dfas-timestamp[] tag::dfas-timing-stats[] An object containing time statistics about the {dfanalytics-job}. end::dfas-timing-stats[] tag::dfas-timing-stats-elapsed[] Runtime of the analysis in milliseconds. end::dfas-timing-stats-elapsed[] tag::dfas-timing-stats-iteration[] Runtime of the latest iteration of the analysis in milliseconds. end::dfas-timing-stats-iteration[] tag::dfas-validation-loss[] An object containing information about validation loss. end::dfas-validation-loss[] tag::dfas-validation-loss-fold[] Validation loss values for every added decision tree during the forest growing procedure. end::dfas-validation-loss-fold[] tag::dfas-validation-loss-type[] The type of the loss metric. For example, `binomial_logistic`. end::dfas-validation-loss-type[] tag::earliest-record-timestamp[] The timestamp of the earliest chronologically input document. end::earliest-record-timestamp[] tag::empty-bucket-count[] The number of buckets which did not contain any data. If your data contains many empty buckets, consider increasing your `bucket_span` or using functions that are tolerant to gaps in data such as `mean`, `non_null_sum` or `non_zero_count`. end::empty-bucket-count[] tag::eta[] Advanced configuration option. The shrinkage applied to the weights. Smaller values result in larger forests which have a better generalization error. However, the smaller the value the longer the training will take. For more information, about shrinkage, see {wikipedia}/Gradient_boosting#Shrinkage[this wiki article]. By default, this value is calcuated during hyperparameter optimization. end::eta[] tag::exclude-frequent[] Contains one of the following values: `all`, `none`, `by`, or `over`. If set, frequent entities are excluded from influencing the anomaly results. Entities can be considered frequent over time or frequent in a population. If you are working with both over and by fields, then you can set `exclude_frequent` to `all` for both fields, or to `by` or `over` for those specific fields. end::exclude-frequent[] tag::exclude-interim-results[] If `true`, the output excludes interim results. By default, interim results are included. end::exclude-interim-results[] tag::failed-category-count[] The number of times that categorization wanted to create a new category but couldn't because the job had hit its `model_memory_limit`. This count does not track which specific categories failed to be created. Therefore you cannot use this value to determine the number of unique categories that were missed. end::failed-category-count[] tag::feature-bag-fraction[] Advanced configuration option. Defines the fraction of features that will be used when selecting a random bag for each candidate split. By default, this value is calculated during hyperparameter optimization. end::feature-bag-fraction[] tag::feature-influence-threshold[] The minimum {olscore} that a document needs to have to calculate its feature influence score. Value range: 0-1 (`0.1` by default). end::feature-influence-threshold[] tag::filter[] One or more <>. In addition to the built-in token filters, other plugins can provide more token filters. This property is optional. If it is not specified, no token filters are applied prior to categorization. end::filter[] tag::filter-id[] A string that uniquely identifies a filter. end::filter-id[] tag::forecast-total[] The number of individual forecasts currently available for the job. A value of `1` or more indicates that forecasts exist. end::forecast-total[] tag::frequency[] The interval at which scheduled queries are made while the {dfeed} runs in real time. The default value is either the bucket span for short bucket spans, or, for longer bucket spans, a sensible fraction of the bucket span. For example: `150s`. When `frequency` is shorter than the bucket span, interim results for the last (partial) bucket are written then eventually overwritten by the full bucket results. If the {dfeed} uses aggregations, this value must be divisible by the interval of the date histogram aggregation. end::frequency[] tag::frequent-category-count[] The number of categories that match more than 1% of categorized documents. end::frequent-category-count[] tag::from[] Skips the specified number of {dfanalytics-jobs}. The default value is `0`. end::from[] tag::from-models[] Skips the specified number of models. The default value is `0`. end::from-models[] tag::function[] The analysis function that is used. For example, `count`, `rare`, `mean`, `min`, `max`, and `sum`. For more information, see {ml-docs}/ml-functions.html[Function reference]. end::function[] tag::gamma[] Advanced configuration option. Regularization parameter to prevent overfitting on the training data set. Multiplies a linear penalty associated with the size of individual trees in the forest. The higher the value the more training will prefer smaller trees. The smaller this parameter the larger individual trees will be and the longer training will take. By default, this value is calculated during hyperparameter optimization. end::gamma[] tag::groups[] A list of job groups. A job can belong to no groups or many. end::groups[] tag::indices[] An array of index names. Wildcards are supported. For example: `["it_ops_metrics", "server*"]`. + -- NOTE: If any indices are in remote clusters then `node.remote_cluster_client` must not be set to `false` on any {ml} nodes. -- end::indices[] tag::indices-options[] Specifies index expansion options that are used during search. + -- For example: ``` { "expand_wildcards": ["all"], "ignore_unavailable": true, "allow_no_indices": "false", "ignore_throttled": true } ``` For more information about these options, see <>. -- end::indices-options[] tag::inference-config-classification-num-top-classes[] Specifies the number of top class predictions to return. Defaults to 0. end::inference-config-classification-num-top-classes[] tag::inference-config-classification-num-top-feature-importance-values[] Specifies the maximum number of {ml-docs}/ml-feature-importance.html[{feat-imp}] values per document. By default, it is zero and no {feat-imp} calculation occurs. end::inference-config-classification-num-top-feature-importance-values[] tag::inference-config-classification-top-classes-results-field[] Specifies the field to which the top classes are written. Defaults to `top_classes`. end::inference-config-classification-top-classes-results-field[] tag::inference-config-classification-prediction-field-type[] Specifies the type of the predicted field to write. Acceptable values are: `string`, `number`, `boolean`. When `boolean` is provided `1.0` is transformed to `true` and `0.0` to `false`. end::inference-config-classification-prediction-field-type[] tag::inference-config-regression-num-top-feature-importance-values[] Specifies the maximum number of {ml-docs}/ml-feature-importance.html[{feat-imp}] values per document. By default, it is zero and no {feat-imp} calculation occurs. end::inference-config-regression-num-top-feature-importance-values[] tag::inference-config-results-field[] The field that is added to incoming documents to contain the inference prediction. Defaults to `predicted_value`. end::inference-config-results-field[] tag::inference-config-results-field-processor[] The field that is added to incoming documents to contain the inference prediction. Defaults to the `results_field` value of the {dfanalytics-job} that was used to train the model, which defaults to `_prediction`. end::inference-config-results-field-processor[] tag::inference-metadata-feature-importance-feature-name[] The feature for which this importance was calculated. end::inference-metadata-feature-importance-feature-name[] tag::inference-metadata-feature-importance-magnitude[] The average magnitude of this feature across all the training data. This value is the average of the absolute values of the importance for this feature. end::inference-metadata-feature-importance-magnitude[] tag::inference-metadata-feature-importance-max[] The maximum importance value across all the training data for this feature. end::inference-metadata-feature-importance-max[] tag::inference-metadata-feature-importance-min[] The minimum importance value across all the training data for this feature. end::inference-metadata-feature-importance-min[] tag::influencers[] A comma separated list of influencer field names. Typically these can be the by, over, or partition fields that are used in the detector configuration. You might also want to use a field name that is not specifically named in a detector, but is available as part of the input data. When you use multiple detectors, the use of influencers is recommended as it aggregates results for each influencer entity. end::influencers[] tag::input-bytes[] The number of bytes of input data posted to the {anomaly-job}. end::input-bytes[] tag::input-field-count[] The total number of fields in input documents posted to the {anomaly-job}. This count includes fields that are not used in the analysis. However, be aware that if you are using a {dfeed}, it extracts only the required fields from the documents it retrieves before posting them to the job. end::input-field-count[] tag::input-record-count[] The number of input documents posted to the {anomaly-job}. end::input-record-count[] tag::invalid-date-count[] The number of input documents with either a missing date field or a date that could not be parsed. end::invalid-date-count[] tag::is-interim[] If `true`, this is an interim result. In other words, the results are calculated based on partial input data. end::is-interim[] tag::job-id-anomaly-detection[] Identifier for the {anomaly-job}. end::job-id-anomaly-detection[] tag::job-id-anomaly-detection-default[] Identifier for the {anomaly-job}. It can be a job identifier, a group name, or a wildcard expression. If you do not specify one of these options, the API returns information for all {anomaly-jobs}. end::job-id-anomaly-detection-default[] tag::job-id-anomaly-detection-define[] Identifier for the {anomaly-job}. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. end::job-id-anomaly-detection-define[] tag::job-id-anomaly-detection-list[] An identifier for the {anomaly-jobs}. It can be a job identifier, a group name, or a comma-separated list of jobs or groups. end::job-id-anomaly-detection-list[] tag::job-id-anomaly-detection-wildcard[] Identifier for the {anomaly-job}. It can be a job identifier, a group name, or a wildcard expression. end::job-id-anomaly-detection-wildcard[] tag::job-id-anomaly-detection-wildcard-list[] Identifier for the {anomaly-job}. It can be a job identifier, a group name, a comma-separated list of jobs or groups, or a wildcard expression. end::job-id-anomaly-detection-wildcard-list[] tag::job-id-data-frame-analytics[] Identifier for the {dfanalytics-job}. end::job-id-data-frame-analytics[] tag::job-id-data-frame-analytics-default[] Identifier for the {dfanalytics-job}. If you do not specify this option, the API returns information for the first hundred {dfanalytics-jobs}. end::job-id-data-frame-analytics-default[] tag::job-id-data-frame-analytics-define[] Identifier for the {dfanalytics-job}. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. end::job-id-data-frame-analytics-define[] tag::job-id-datafeed[] The unique identifier for the job to which the {dfeed} sends data. end::job-id-datafeed[] tag::jobs-stats-anomaly-detection[] An array of {anomaly-job} statistics objects. For more information, see <>. end::jobs-stats-anomaly-detection[] tag::lambda[] Advanced configuration option. Regularization parameter to prevent overfitting on the training data set. Multiplies an L2 regularisation term which applies to leaf weights of the individual trees in the forest. The higher the value the more training will attempt to keep leaf weights small. This makes the prediction function smoother at the expense of potentially not being able to capture relevant relationships between the features and the {depvar}. The smaller this parameter the larger individual trees will be and the longer training will take. By default, this value is calculated during hyperparameter optimization. end::lambda[] tag::last-data-time[] The timestamp at which data was last analyzed, according to server time. end::last-data-time[] tag::latency[] The size of the window in which to expect data that is out of time order. The default value is 0 (no latency). If you specify a non-zero value, it must be greater than or equal to one second. For more information about time units, see <>. + -- NOTE: Latency is only applicable when you send data by using the <> API. -- end::latency[] tag::latest-empty-bucket-timestamp[] The timestamp of the last bucket that did not contain any data. end::latest-empty-bucket-timestamp[] tag::latest-record-timestamp[] The timestamp of the latest chronologically input document. end::latest-record-timestamp[] tag::latest-sparse-record-timestamp[] The timestamp of the last bucket that was considered sparse. end::latest-sparse-record-timestamp[] tag::max-empty-searches[] If a real-time {dfeed} has never seen any data (including during any initial training period) then it will automatically stop itself and close its associated job after this many real-time searches that return no documents. In other words, it will stop after `frequency` times `max_empty_searches` of real-time operation. If not set then a {dfeed} with no end time that sees no data will remain started until it is explicitly stopped. By default this setting is not set. end::max-empty-searches[] tag::max-trees[] Advanced configuration option. Defines the maximum number of trees the forest is allowed to contain. The maximum value is 2000. By default, this value is calculated during hyperparameter optimization. end::max-trees[] tag::method[] The method that {oldetection} uses. Available methods are `lof`, `ldof`, `distance_kth_nn`, `distance_knn`, and `ensemble`. The default value is `ensemble`, which means that {oldetection} uses an ensemble of different methods and normalises and combines their individual {olscores} to obtain the overall {olscore}. end::method[] tag::missing-field-count[] The number of input documents that are missing a field that the {anomaly-job} is configured to analyze. Input documents with missing fields are still processed because it is possible that not all fields are missing. + -- NOTE: If you are using {dfeeds} or posting data to the job in JSON format, a high `missing_field_count` is often not an indication of data issues. It is not necessarily a cause for concern. -- end::missing-field-count[] tag::mode[] There are three available modes: + -- * `auto`: The chunk size is dynamically calculated. This is the default and recommended value. * `manual`: Chunking is applied according to the specified `time_span`. * `off`: No chunking is applied. -- end::mode[] tag::model-bytes[] The number of bytes of memory used by the models. This is the maximum value since the last time the model was persisted. If the job is closed, this value indicates the latest size. end::model-bytes[] tag::model-bytes-exceeded[] The number of bytes over the high limit for memory usage at the last allocation failure. end::model-bytes-exceeded[] tag::model-id[] The unique identifier of the trained model. end::model-id[] tag::model-memory-limit[] The approximate maximum amount of memory resources that are required for analytical processing. Once this limit is approached, data pruning becomes more aggressive. Upon exceeding this limit, new entities are not modeled. The default value for jobs created in version 6.1 and later is `1024mb`. This value will need to be increased for jobs that are expected to analyze high cardinality fields, but the default is set to a relatively small size to ensure that high resource usage is a conscious decision. The default value for jobs created in versions earlier than 6.1 is `4096mb`. + If you specify a number instead of a string, the units are assumed to be MiB. Specifying a string is recommended for clarity. If you specify a byte size unit of `b` or `kb` and the number does not equate to a discrete number of megabytes, it is rounded down to the closest MiB. The minimum valid value is 1 MiB. If you specify a value less than 1 MiB, an error occurs. For more information about supported byte size units, see <>. + If your `elasticsearch.yml` file contains an `xpack.ml.max_model_memory_limit` setting, an error occurs when you try to create jobs that have `model_memory_limit` values greater than that setting. For more information, see <>. end::model-memory-limit[] tag::model-memory-limit-anomaly-jobs[] The upper limit for model memory usage, checked on increasing values. end::model-memory-limit-anomaly-jobs[] tag::model-memory-status[] The status of the mathematical models, which can have one of the following values: + -- * `ok`: The models stayed below the configured value. * `soft_limit`: The models used more than 60% of the configured memory limit and older unused models will be pruned to free up space. * `hard_limit`: The models used more space than the configured memory limit. As a result, not all incoming data was processed. -- end::model-memory-status[] tag::model-plot-config[] This advanced configuration option stores model information along with the results. It provides a more detailed view into {anomaly-detect}. + -- WARNING: If you enable model plot it can add considerable overhead to the performance of the system; it is not feasible for jobs with many entities. Model plot provides a simplified and indicative view of the model and its bounds. It does not display complex features such as multivariate correlations or multimodal data. As such, anomalies may occasionally be reported which cannot be seen in the model plot. Model plot config can be configured when the job is created or updated later. It must be disabled if performance issues are experienced. -- end::model-plot-config[] tag::model-plot-config-annotations-enabled[] If true, enables calculation and storage of the model change annotations for each entity that is being analyzed. Defaults to `enabled`. end::model-plot-config-annotations-enabled[] tag::model-plot-config-enabled[] If true, enables calculation and storage of the model bounds for each entity that is being analyzed. By default, this is not enabled. end::model-plot-config-enabled[] tag::model-plot-config-terms[] Limits data collection to this comma separated list of partition or by field values. If terms are not specified or it is an empty string, no filtering is applied. For example, "CPU,NetworkIn,DiskWrites". Wildcards are not supported. Only the specified `terms` can be viewed when using the Single Metric Viewer. end::model-plot-config-terms[] tag::model-snapshot-retention-days[] Advanced configuration option, which affects the automatic removal of old model snapshots for this job. It specifies the maximum period of time (in days) that snapshots are retained. This period is relative to the timestamp of the most recent snapshot for this job. The default value is `10`, which means snapshots ten days older than the newest snapshot are deleted. For more information, refer to {ml-docs}/ml-model-snapshots.html[Model snapshots]. end::model-snapshot-retention-days[] tag::model-timestamp[] The timestamp of the last record when the model stats were gathered. end::model-timestamp[] tag::multivariate-by-fields[] This functionality is reserved for internal use. It is not supported for use in customer environments and is not subject to the support SLA of official GA features. + -- If set to `true`, the analysis will automatically find correlations between metrics for a given `by` field value and report anomalies when those correlations cease to hold. For example, suppose CPU and memory usage on host A is usually highly correlated with the same metrics on host B. Perhaps this correlation occurs because they are running a load-balanced application. If you enable this property, then anomalies will be reported when, for example, CPU usage on host A is high and the value of CPU usage on host B is low. That is to say, you'll see an anomaly when the CPU of host A is unusual given the CPU of host B. NOTE: To use the `multivariate_by_fields` property, you must also specify `by_field_name` in your detector. -- end::multivariate-by-fields[] tag::n-neighbors[] Defines the value for how many nearest neighbors each method of {oldetection} uses to calculate its {olscore}. When the value is not set, different values are used for different ensemble members. This deafault behavior helps improve the diversity in the ensemble; only override it if you are confident that the value you choose is appropriate for the data set. end::n-neighbors[] tag::node-address[] The network address of the node. end::node-address[] tag::node-attributes[] Lists node attributes such as `ml.machine_memory` or `ml.max_open_jobs` settings. end::node-attributes[] tag::node-datafeeds[] For started {dfeeds} only, this information pertains to the node upon which the {dfeed} is started. end::node-datafeeds[] tag::node-ephemeral-id[] The ephemeral ID of the node. end::node-ephemeral-id[] tag::node-id[] The unique identifier of the node. end::node-id[] tag::node-jobs[] Contains properties for the node that runs the job. This information is available only for open jobs. end::node-jobs[] tag::node-transport-address[] The host and port where transport HTTP connections are accepted. end::node-transport-address[] tag::open-time[] For open jobs only, the elapsed time for which the job has been open. end::open-time[] tag::outlier-fraction[] The proportion of the data set that is assumed to be outlying prior to {oldetection}. For example, 0.05 means it is assumed that 5% of values are real outliers and 95% are inliers. end::outlier-fraction[] tag::out-of-order-timestamp-count[] The number of input documents that are out of time sequence and outside of the latency window. This information is applicable only when you provide data to the {anomaly-job} by using the <>. These out of order documents are discarded, since jobs require time series data to be in ascending chronological order. end::out-of-order-timestamp-count[] tag::over-field-name[] The field used to split the data. In particular, this property is used for analyzing the splits with respect to the history of all splits. It is used for finding unusual values in the population of all splits. For more information, see {ml-docs}/ml-configuring-populations.html[Performing population analysis]. end::over-field-name[] tag::partition-field-name[] The field used to segment the analysis. When you use this property, you have completely independent baselines for each value of this field. end::partition-field-name[] tag::peak-model-bytes[] The peak number of bytes of memory ever used by the models. end::peak-model-bytes[] tag::per-partition-categorization[] Settings related to how categorization interacts with partition fields. end::per-partition-categorization[] tag::per-partition-categorization-enabled[] To enable this setting, you must also set the partition_field_name property to the same value in every detector that uses the keyword mlcategory. Otherwise, job creation fails. end::per-partition-categorization-enabled[] tag::per-partition-categorization-stop-on-warn[] This setting can be set to true only if per-partition categorization is enabled. If true, both categorization and subsequent anomaly detection stops for partitions where the categorization status changes to `warn`. This setting makes it viable to have a job where it is expected that categorization works well for some partitions but not others; you do not pay the cost of bad categorization forever in the partitions where it works badly. end::per-partition-categorization-stop-on-warn[] tag::prediction-field-name[] Defines the name of the prediction field in the results. Defaults to `_prediction`. end::prediction-field-name[] tag::processed-field-count[] The total number of fields in all the documents that have been processed by the {anomaly-job}. Only fields that are specified in the detector configuration object contribute to this count. The timestamp is not included in this count. end::processed-field-count[] tag::processed-record-count[] The number of input documents that have been processed by the {anomaly-job}. This value includes documents with missing fields, since they are nonetheless analyzed. If you use {dfeeds} and have aggregations in your search query, the `processed_record_count` is the number of aggregation results processed, not the number of {es} documents. end::processed-record-count[] tag::query[] The {es} query domain-specific language (DSL). This value corresponds to the query object in an {es} search POST body. All the options that are supported by {es} can be used, as this object is passed verbatim to {es}. By default, this property has the following value: `{"match_all": {"boost": 1}}`. end::query[] tag::query-delay[] The number of seconds behind real time that data is queried. For example, if data from 10:04 a.m. might not be searchable in {es} until 10:06 a.m., set this property to 120 seconds. The default value is randomly selected between `60s` and `120s`. This randomness improves the query performance when there are multiple jobs running on the same node. For more information, see {ml-docs}/ml-delayed-data-detection.html[Handling delayed data]. end::query-delay[] tag::randomize-seed[] Defines the seed to the random generator that is used to pick which documents will be used for training. By default it is randomly generated. Set it to a specific value to ensure the same documents are used for training assuming other related parameters (e.g. `source`, `analyzed_fields`, etc.) are the same. end::randomize-seed[] tag::rare-category-count[] The number of categories that match just one categorized document. end::rare-category-count[] tag::renormalization-window-days[] Advanced configuration option. The period over which adjustments to the score are applied, as new data is seen. The default value is the longer of 30 days or 100 `bucket_spans`. end::renormalization-window-days[] tag::results-index-name[] A text string that affects the name of the {ml} results index. The default value is `shared`, which generates an index named `.ml-anomalies-shared`. end::results-index-name[] tag::results-retention-days[] Advanced configuration option. The period of time (in days) that results are retained. Age is calculated relative to the timestamp of the latest bucket result. If this property has a non-null value, once per day at 00:30 (server time), results that are the specified number of days older than the latest bucket result are deleted from {es}. The default value is null, which means all results are retained. end::results-retention-days[] tag::retain[] If `true`, this snapshot will not be deleted during automatic cleanup of snapshots older than `model_snapshot_retention_days`. However, this snapshot will be deleted when the job is deleted. The default value is `false`. end::retain[] tag::script-fields[] Specifies scripts that evaluate custom expressions and returns script fields to the {dfeed}. The detector configuration objects in a job can contain functions that use these script fields. For more information, see {ml-docs}/ml-configuring-transform.html[Transforming data with script fields] and <>. end::script-fields[] tag::scroll-size[] The `size` parameter that is used in {es} searches. The default value is `1000`. end::scroll-size[] tag::search-bucket-avg[] The average search time per bucket, in milliseconds. end::search-bucket-avg[] tag::search-count[] The number of searches run by the {dfeed}. end::search-count[] tag::search-exp-avg-hour[] The exponential average search time per hour, in milliseconds. end::search-exp-avg-hour[] tag::search-time[] The total time the {dfeed} spent searching, in milliseconds. end::search-time[] tag::size[] Specifies the maximum number of {dfanalytics-jobs} to obtain. The default value is `100`. end::size[] tag::size-models[] Specifies the maximum number of models to obtain. The default value is `100`. end::size-models[] tag::snapshot-id[] A numerical character string that uniquely identifies the model snapshot. end::snapshot-id[] tag::sparse-bucket-count[] The number of buckets that contained few data points compared to the expected number of data points. If your data contains many sparse buckets, consider using a longer `bucket_span`. end::sparse-bucket-count[] tag::standardization-enabled[] If `true`, the following operation is performed on the columns before computing {olscores}: (x_i - mean(x_i)) / sd(x_i). Defaults to `true`. For more information about this concept, see https://en.wikipedia.org/wiki/Feature_scaling#Standardization_(Z-score_Normalization)[Wikipedia]. end::standardization-enabled[] tag::state-anomaly-job[] The status of the {anomaly-job}, which can be one of the following values: + -- * `closed`: The job finished successfully with its model state persisted. The job must be opened before it can accept further data. * `closing`: The job close action is in progress and has not yet completed. A closing job cannot accept further data. * `failed`: The job did not finish successfully due to an error. This situation can occur due to invalid input data, a fatal error occurring during the analysis, or an external interaction such as the process being killed by the Linux out of memory (OOM) killer. If the job had irrevocably failed, it must be force closed and then deleted. If the {dfeed} can be corrected, the job can be closed and then re-opened. * `opened`: The job is available to receive and process data. * `opening`: The job open action is in progress and has not yet completed. -- end::state-anomaly-job[] tag::state-datafeed[] The status of the {dfeed}, which can be one of the following values: + -- * `starting`: The {dfeed} has been requested to start but has not yet started. * `started`: The {dfeed} is actively receiving data. * `stopping`: The {dfeed} has been requested to stop gracefully and is completing its final action. * `stopped`: The {dfeed} is stopped and will not receive data until it is re-started. -- end::state-datafeed[] tag::summary-count-field-name[] If this property is specified, the data that is fed to the job is expected to be pre-summarized. This property value is the name of the field that contains the count of raw data points that have been summarized. The same `summary_count_field_name` applies to all detectors in the job. + -- NOTE: The `summary_count_field_name` property cannot be used with the `metric` function. -- end::summary-count-field-name[] tag::tags[] A comma delimited string of tags. A trained model can have many tags, or none. When supplied, only trained models that contain all the supplied tags are returned. end::tags[] tag::time-format[] The time format, which can be `epoch`, `epoch_ms`, or a custom pattern. The default value is `epoch`, which refers to UNIX or Epoch time (the number of seconds since 1 Jan 1970). The value `epoch_ms` indicates that time is measured in milliseconds since the epoch. The `epoch` and `epoch_ms` time formats accept either integer or real values. + + NOTE: Custom patterns must conform to the Java `DateTimeFormatter` class. When you use date-time formatting patterns, it is recommended that you provide the full date, time and time zone. For example: `yyyy-MM-dd'T'HH:mm:ssX`. If the pattern that you specify is not sufficient to produce a complete timestamp, job creation fails. end::time-format[] tag::time-span[] The time span that each search will be querying. This setting is only applicable when the mode is set to `manual`. For example: `3h`. end::time-span[] tag::timeout-start[] Controls the amount of time to wait until the {dfanalytics-job} starts. Defaults to 20 seconds. end::timeout-start[] tag::timeout-stop[] Controls the amount of time to wait until the {dfanalytics-job} stops. Defaults to 20 seconds. end::timeout-stop[] tag::timestamp-results[] The start time of the bucket for which these results were calculated. end::timestamp-results[] tag::tokenizer[] The name or definition of the <> to use after character filters are applied. This property is compulsory if `categorization_analyzer` is specified as an object. Machine learning provides a tokenizer called `ml_classic` that tokenizes in the same way as the non-customizable tokenizer in older versions of the product. If you want to use that tokenizer but change the character or token filters, specify `"tokenizer": "ml_classic"` in your `categorization_analyzer`. end::tokenizer[] tag::total-by-field-count[] The number of `by` field values that were analyzed by the models. This value is cumulative for all detectors in the job. end::total-by-field-count[] tag::total-category-count[] The number of categories created by categorization. end::total-category-count[] tag::total-over-field-count[] The number of `over` field values that were analyzed by the models. This value is cumulative for all detectors in the job. end::total-over-field-count[] tag::total-partition-field-count[] The number of `partition` field values that were analyzed by the models. This value is cumulative for all detectors in the job. end::total-partition-field-count[] tag::training-percent[] Defines what percentage of the eligible documents that will be used for training. Documents that are ignored by the analysis (for example those that contain arrays with more than one value) won’t be included in the calculation for used percentage. Defaults to `100`. end::training-percent[] tag::use-null[] Defines whether a new series is used as the null series when there is no value for the by or partition fields. The default value is `false`. end::use-null[] tag::verbose[] Defines whether the stats response should be verbose. The default value is `false`. end::verbose[]