[[pipeline]] == Pipeline Definition A pipeline is a definition of a series of <> that are to be executed in the same order as they are declared. A pipeline consists of two main fields: a `description` and a list of `processors`: [source,js] -------------------------------------------------- { "description" : "...", "processors" : [ ... ] } -------------------------------------------------- // NOTCONSOLE The `description` is a special field to store a helpful description of what the pipeline does. The `processors` parameter defines a list of processors to be executed in order. [[ingest-apis]] == Ingest APIs The following ingest APIs are available for managing pipelines: * <> to add or update a pipeline * <> to return a specific pipeline * <> to delete a pipeline * <> to simulate a call to a pipeline [[put-pipeline-api]] === Put Pipeline API The put pipeline API adds pipelines and updates existing pipelines in the cluster. [source,js] -------------------------------------------------- PUT _ingest/pipeline/my-pipeline-id { "description" : "describe pipeline", "processors" : [ { "set" : { "field": "foo", "value": "bar" } } ] } -------------------------------------------------- // CONSOLE NOTE: The put pipeline API also instructs all ingest nodes to reload their in-memory representation of pipelines, so that pipeline changes take effect immediately. [[get-pipeline-api]] === Get Pipeline API The get pipeline API returns pipelines based on ID. This API always returns a local reference of the pipeline. [source,js] -------------------------------------------------- GET _ingest/pipeline/my-pipeline-id -------------------------------------------------- // CONSOLE // TEST[continued] Example response: [source,js] -------------------------------------------------- { "my-pipeline-id" : { "description" : "describe pipeline", "processors" : [ { "set" : { "field" : "foo", "value" : "bar" } } ] } } -------------------------------------------------- // TESTRESPONSE For each returned pipeline, the source and the version are returned. The version is useful for knowing which version of the pipeline the node has. You can specify multiple IDs to return more than one pipeline. Wildcards are also supported. [float] [[versioning-pipelines]] ==== Pipeline Versioning Pipelines can optionally add a `version` number, which can be any integer value, in order to simplify pipeline management by external systems. The `version` field is completely optional and it is meant solely for external management of pipelines. To unset a `version`, simply replace the pipeline without specifying one. [source,js] -------------------------------------------------- PUT _ingest/pipeline/my-pipeline-id { "description" : "describe pipeline", "version" : 123, "processors" : [ { "set" : { "field": "foo", "value": "bar" } } ] } -------------------------------------------------- // CONSOLE To check for the `version`, you can <> using `filter_path` to limit the response to just the `version`: [source,js] -------------------------------------------------- GET /_ingest/pipeline/my-pipeline-id?filter_path=*.version -------------------------------------------------- // CONSOLE // TEST[continued] This should give a small response that makes it both easy and inexpensive to parse: [source,js] -------------------------------------------------- { "my-pipeline-id" : { "version" : 123 } } -------------------------------------------------- // TESTRESPONSE [[delete-pipeline-api]] === Delete Pipeline API The delete pipeline API deletes pipelines by ID or wildcard match (`my-*`, `*`). [source,js] -------------------------------------------------- DELETE _ingest/pipeline/my-pipeline-id -------------------------------------------------- // CONSOLE // TEST[continued] //// Hidden setup for wildcard test: [source,js] -------------------------------------------------- PUT _ingest/pipeline/wild-one { "description" : "first pipeline to be wildcard deleted", "processors" : [ ] } PUT _ingest/pipeline/wild-two { "description" : "second pipeline to be wildcard deleted", "processors" : [ ] } DELETE _ingest/pipeline/* -------------------------------------------------- // CONSOLE Hidden expected response: [source,js] -------------------------------------------------- { "acknowledged": true } -------------------------------------------------- // TESTRESPONSE //// [[simulate-pipeline-api]] === Simulate Pipeline API The simulate pipeline API executes a specific pipeline against the set of documents provided in the body of the request. You can either specify an existing pipeline to execute against the provided documents, or supply a pipeline definition in the body of the request. Here is the structure of a simulate request with a pipeline definition provided in the body of the request: [source,js] -------------------------------------------------- POST _ingest/pipeline/_simulate { "pipeline" : { // pipeline definition here }, "docs" : [ { "_source": {/** first document **/} }, { "_source": {/** second document **/} }, // ... ] } -------------------------------------------------- // NOTCONSOLE Here is the structure of a simulate request against an existing pipeline: [source,js] -------------------------------------------------- POST _ingest/pipeline/my-pipeline-id/_simulate { "docs" : [ { "_source": {/** first document **/} }, { "_source": {/** second document **/} }, // ... ] } -------------------------------------------------- // NOTCONSOLE Here is an example of a simulate request with a pipeline defined in the request and its response: [source,js] -------------------------------------------------- POST _ingest/pipeline/_simulate { "pipeline" : { "description": "_description", "processors": [ { "set" : { "field" : "field2", "value" : "_value" } } ] }, "docs": [ { "_index": "index", "_type": "_doc", "_id": "id", "_source": { "foo": "bar" } }, { "_index": "index", "_type": "_doc", "_id": "id", "_source": { "foo": "rab" } } ] } -------------------------------------------------- // CONSOLE Response: [source,js] -------------------------------------------------- { "docs": [ { "doc": { "_id": "id", "_index": "index", "_type": "_doc", "_source": { "field2": "_value", "foo": "bar" }, "_ingest": { "timestamp": "2017-05-04T22:30:03.187Z" } } }, { "doc": { "_id": "id", "_index": "index", "_type": "_doc", "_source": { "field2": "_value", "foo": "rab" }, "_ingest": { "timestamp": "2017-05-04T22:30:03.188Z" } } } ] } -------------------------------------------------- // TESTRESPONSE[s/"2017-05-04T22:30:03.187Z"/$body.docs.0.doc._ingest.timestamp/] // TESTRESPONSE[s/"2017-05-04T22:30:03.188Z"/$body.docs.1.doc._ingest.timestamp/] [[ingest-verbose-param]] ==== Viewing Verbose Results You can use the simulate pipeline API to see how each processor affects the ingest document as it passes through the pipeline. To see the intermediate results of each processor in the simulate request, you can add the `verbose` parameter to the request. Here is an example of a verbose request and its response: [source,js] -------------------------------------------------- POST _ingest/pipeline/_simulate?verbose { "pipeline" : { "description": "_description", "processors": [ { "set" : { "field" : "field2", "value" : "_value2" } }, { "set" : { "field" : "field3", "value" : "_value3" } } ] }, "docs": [ { "_index": "index", "_type": "_doc", "_id": "id", "_source": { "foo": "bar" } }, { "_index": "index", "_type": "_doc", "_id": "id", "_source": { "foo": "rab" } } ] } -------------------------------------------------- // CONSOLE Response: [source,js] -------------------------------------------------- { "docs": [ { "processor_results": [ { "doc": { "_id": "id", "_index": "index", "_type": "_doc", "_source": { "field2": "_value2", "foo": "bar" }, "_ingest": { "timestamp": "2017-05-04T22:46:09.674Z" } } }, { "doc": { "_id": "id", "_index": "index", "_type": "_doc", "_source": { "field3": "_value3", "field2": "_value2", "foo": "bar" }, "_ingest": { "timestamp": "2017-05-04T22:46:09.675Z" } } } ] }, { "processor_results": [ { "doc": { "_id": "id", "_index": "index", "_type": "_doc", "_source": { "field2": "_value2", "foo": "rab" }, "_ingest": { "timestamp": "2017-05-04T22:46:09.676Z" } } }, { "doc": { "_id": "id", "_index": "index", "_type": "_doc", "_source": { "field3": "_value3", "field2": "_value2", "foo": "rab" }, "_ingest": { "timestamp": "2017-05-04T22:46:09.677Z" } } } ] } ] } -------------------------------------------------- // TESTRESPONSE[s/"2017-05-04T22:46:09.674Z"/$body.docs.0.processor_results.0.doc._ingest.timestamp/] // TESTRESPONSE[s/"2017-05-04T22:46:09.675Z"/$body.docs.0.processor_results.1.doc._ingest.timestamp/] // TESTRESPONSE[s/"2017-05-04T22:46:09.676Z"/$body.docs.1.processor_results.0.doc._ingest.timestamp/] // TESTRESPONSE[s/"2017-05-04T22:46:09.677Z"/$body.docs.1.processor_results.1.doc._ingest.timestamp/] [[accessing-data-in-pipelines]] == Accessing Data in Pipelines The processors in a pipeline have read and write access to documents that pass through the pipeline. The processors can access fields in the source of a document and the document's metadata fields. [float] [[accessing-source-fields]] === Accessing Fields in the Source Accessing a field in the source is straightforward. You simply refer to fields by their name. For example: [source,js] -------------------------------------------------- { "set": { "field": "my_field", "value": 582.1 } } -------------------------------------------------- // NOTCONSOLE On top of this, fields from the source are always accessible via the `_source` prefix: [source,js] -------------------------------------------------- { "set": { "field": "_source.my_field", "value": 582.1 } } -------------------------------------------------- // NOTCONSOLE [float] [[accessing-metadata-fields]] === Accessing Metadata Fields You can access metadata fields in the same way that you access fields in the source. This is possible because Elasticsearch doesn't allow fields in the source that have the same name as metadata fields. The following example sets the `_id` metadata field of a document to `1`: [source,js] -------------------------------------------------- { "set": { "field": "_id", "value": "1" } } -------------------------------------------------- // NOTCONSOLE The following metadata fields are accessible by a processor: `_index`, `_type`, `_id`, `_routing`. [float] [[accessing-ingest-metadata]] === Accessing Ingest Metadata Fields Beyond metadata fields and source fields, ingest also adds ingest metadata to the documents that it processes. These metadata properties are accessible under the `_ingest` key. Currently ingest adds the ingest timestamp under the `_ingest.timestamp` key of the ingest metadata. The ingest timestamp is the time when Elasticsearch received the index or bulk request to pre-process the document. Any processor can add ingest-related metadata during document processing. Ingest metadata is transient and is lost after a document has been processed by the pipeline. Therefore, ingest metadata won't be indexed. The following example adds a field with the name `received`. The value is the ingest timestamp: [source,js] -------------------------------------------------- { "set": { "field": "received", "value": "{{_ingest.timestamp}}" } } -------------------------------------------------- // NOTCONSOLE Unlike Elasticsearch metadata fields, the ingest metadata field name `_ingest` can be used as a valid field name in the source of a document. Use `_source._ingest` to refer to the field in the source document. Otherwise, `_ingest` will be interpreted as an ingest metadata field. [float] [[accessing-template-fields]] === Accessing Fields and Metafields in Templates A number of processor settings also support templating. Settings that support templating can have zero or more template snippets. A template snippet begins with `{{` and ends with `}}`. Accessing fields and metafields in templates is exactly the same as via regular processor field settings. The following example adds a field named `field_c`. Its value is a concatenation of the values of `field_a` and `field_b`. [source,js] -------------------------------------------------- { "set": { "field": "field_c", "value": "{{field_a}} {{field_b}}" } } -------------------------------------------------- // NOTCONSOLE The following example uses the value of the `geoip.country_iso_code` field in the source to set the index that the document will be indexed into: [source,js] -------------------------------------------------- { "set": { "field": "_index", "value": "{{geoip.country_iso_code}}" } } -------------------------------------------------- // NOTCONSOLE Dynamic field names are also supported. This example sets the field named after the value of `service` to the value of the field `code`: [source,js] -------------------------------------------------- { "set": { "field": "{{service}}", "value": "{{code}}" } } -------------------------------------------------- // NOTCONSOLE [[ingest-conditionals]] == Conditional Execution in Pipelines Each processor allows for an optional `if` condition to determine if that processor should be executed or skipped. The value of the `if` is a <> script that needs to evaluate to `true` or `false`. For example the following processor will <> the document (i.e. not index it) if the input document has a field named `network_name` and it is equal to `Guest`. [source,js] -------------------------------------------------- PUT _ingest/pipeline/drop_guests_network { "processors": [ { "drop": { "if": "ctx.network_name == 'Guest'" } } ] } -------------------------------------------------- // CONSOLE Using that pipeline for an index request: [source,js] -------------------------------------------------- POST test/_doc/1?pipeline=drop_guests_network { "network_name" : "Guest" } -------------------------------------------------- // CONSOLE // TEST[continued] Results in nothing indexed since the conditional evaluated to `true`. [source,js] -------------------------------------------------- { "_index": "test", "_type": "_doc", "_id": "1", "_version": -3, "result": "noop", "_shards": { "total": 0, "successful": 0, "failed": 0 } } -------------------------------------------------- // TESTRESPONSE [[ingest-conditional-nullcheck]] === Handling Nested Fields in Conditionals Source documents often contain nested fields. Care should be taken to avoid NullPointerExceptions if the parent object does not exist in the document. For example `ctx.a.b.c` can throw an NullPointerExceptions if the source document does not have top level `a` object, or a second level `b` object. To help protect against NullPointerExceptions, null safe operations should be used. Fortunately, Painless makes {painless}/painless-operators-reference.html#null-safe-operator[null safe] operations easy with the `?.` operator. [source,js] -------------------------------------------------- PUT _ingest/pipeline/drop_guests_network { "processors": [ { "drop": { "if": "ctx.network?.name == 'Guest'" } } ] } -------------------------------------------------- // CONSOLE The following document will get <> correctly: [source,js] -------------------------------------------------- POST test/_doc/1?pipeline=drop_guests_network { "network": { "name": "Guest" } } -------------------------------------------------- // CONSOLE // TEST[continued] //// Hidden example assertion: [source,js] -------------------------------------------------- GET test/_doc/1 -------------------------------------------------- // CONSOLE // TEST[continued] // TEST[catch:missing] [source,js] -------------------------------------------------- { "_index": "test", "_type": "_doc", "_id": "1", "found": false } -------------------------------------------------- // TESTRESPONSE //// Thanks to the `?.` operator the following document will not throw an error. If the pipeline used a `.` the following document would throw a NullPointerException since the `network` object is not part of the source document. [source,js] -------------------------------------------------- POST test/_doc/2?pipeline=drop_guests_network { "foo" : "bar" } -------------------------------------------------- // CONSOLE // TEST[continued] //// Hidden example assertion: [source,js] -------------------------------------------------- GET test/_doc/2 -------------------------------------------------- // CONSOLE // TEST[continued] [source,js] -------------------------------------------------- { "_index": "test", "_type": "_doc", "_id": "2", "_version": 1, "_seq_no": 22, "_primary_term": 1, "found": true, "_source": { "foo": "bar" } } -------------------------------------------------- // TESTRESPONSE[s/"_seq_no": \d+/"_seq_no" : $body._seq_no/ s/"_primary_term": 1/"_primary_term" : $body._primary_term/] //// The source document can also use dot delimited fields to represent nested fields. For example instead the source document defining the fields nested: [source,js] -------------------------------------------------- { "network": { "name": "Guest" } } -------------------------------------------------- // NOTCONSOLE The source document may have the nested fields flattened as such: [source,js] -------------------------------------------------- { "network.name": "Guest" } -------------------------------------------------- // NOTCONSOLE If this is the case, use the <> so that the nested fields may be used in a conditional. [source,js] -------------------------------------------------- PUT _ingest/pipeline/drop_guests_network { "processors": [ { "dot_expander": { "field": "network.name" } }, { "drop": { "if": "ctx.network?.name == 'Guest'" } } ] } -------------------------------------------------- // CONSOLE Now the following input document can be used with a conditional in the pipeline. [source,js] -------------------------------------------------- POST test/_doc/3?pipeline=drop_guests_network { "network.name": "Guest" } -------------------------------------------------- // CONSOLE // TEST[continued] //// Hidden example assertion: [source,js] -------------------------------------------------- GET test/_doc/3 -------------------------------------------------- // CONSOLE // TEST[continued] // TEST[catch:missing] [source,js] -------------------------------------------------- { "_index": "test", "_type": "_doc", "_id": "3", "found": false } -------------------------------------------------- // TESTRESPONSE //// The `?.` operators works well for use in the `if` conditional because the {painless}/painless-operators-reference.html#null-safe-operator[null safe operator] returns null if the object is null and `==` is null safe (as well as many other {painless}/painless-operators.html[painless operators]). However, calling a method such as `.equalsIgnoreCase` is not null safe and can result in a NullPointerException. Some situations allow for the same functionality but done so in a null safe manner. For example: `'Guest'.equalsIgnoreCase(ctx.network?.name)` is null safe because `Guest` is always non null, but `ctx.network?.name.equalsIgnoreCase('Guest')` is not null safe since `ctx.network?.name` can return null. Some situations require an explicit null check. In the following example there is not null safe alternative, so an explict null check is needed. [source,js] -------------------------------------------------- { "drop": { "if": "ctx.network?.name != null && ctx.network.name.contains('Guest')" } } -------------------------------------------------- // NOTCONSOLE [[ingest-conditional-complex]] === Complex Conditionals The `if` condition can be more then a simple equality check. The full power of the <> is available and running in the {painless}/painless-ingest-processor-context.html[ingest processor context]. IMPORTANT: The value of ctx is read-only in `if` conditions. A more complex `if` condition that drops the document (i.e. not index it) unless it has a multi-valued tag field with at least one value that contains the characters `prod` (case insensitive). [source,js] -------------------------------------------------- PUT _ingest/pipeline/not_prod_dropper { "processors": [ { "drop": { "if": "Collection tags = ctx.tags;if(tags != null){for (String tag : tags) {if (tag.toLowerCase().contains('prod')) { return false;}}} return true;" } } ] } -------------------------------------------------- // CONSOLE The conditional needs to be all on one line since JSON does not support new line characters. However, Kibana's console supports a triple quote syntax to help with writing and debugging scripts like these. [source,js] -------------------------------------------------- PUT _ingest/pipeline/not_prod_dropper { "processors": [ { "drop": { "if": """ Collection tags = ctx.tags; if(tags != null){ for (String tag : tags) { if (tag.toLowerCase().contains('prod')) { return false; } } } return true; """ } } ] } -------------------------------------------------- // NOTCONSOLE // TEST[continued] [source,js] -------------------------------------------------- POST test/_doc/1?pipeline=not_prod_dropper { "tags": ["application:myapp", "env:Stage"] } -------------------------------------------------- // CONSOLE // TEST[continued] The document is <> since `prod` (case insensitive) is not found in the tags. //// Hidden example assertion: [source,js] -------------------------------------------------- GET test/_doc/1 -------------------------------------------------- // CONSOLE // TEST[continued] // TEST[catch:missing] [source,js] -------------------------------------------------- { "_index": "test", "_type": "_doc", "_id": "1", "found": false } -------------------------------------------------- // TESTRESPONSE //// The following document is indexed (i.e. not dropped) since `prod` (case insensitive) is found in the tags. [source,js] -------------------------------------------------- POST test/_doc/2?pipeline=not_prod_dropper { "tags": ["application:myapp", "env:Production"] } -------------------------------------------------- // CONSOLE // TEST[continued] //// Hidden example assertion: [source,js] -------------------------------------------------- GET test/_doc/2 -------------------------------------------------- // CONSOLE // TEST[continued] [source,js] -------------------------------------------------- { "_index": "test", "_type": "_doc", "_id": "2", "_version": 1, "_seq_no": 34, "_primary_term": 1, "found": true, "_source": { "tags": [ "application:myapp", "env:Production" ] } } -------------------------------------------------- // TESTRESPONSE[s/"_seq_no": \d+/"_seq_no" : $body._seq_no/ s/"_primary_term" : 1/"_primary_term" : $body._primary_term/] //// The <> with verbose can be used to help build out complex conditionals. If the conditional evaluates to false it will be omitted from the verbose results of the simulation since the document will not change. Care should be taken to avoid overly complex or expensive conditional checks since the condition needs to be checked for each and every document. [[conditionals-with-multiple-pipelines]] === Conditionals with the Pipeline Processor The combination of the `if` conditional and the <> can result in a simple, yet powerful means to process heterogeneous input. For example, you can define a single pipeline that delegates to other pipelines based on some criteria. [source,js] -------------------------------------------------- PUT _ingest/pipeline/logs_pipeline { "description": "A pipeline of pipelines for log files", "version": 1, "processors": [ { "pipeline": { "if": "ctx.service?.name == 'apache_httpd'", "name": "httpd_pipeline" } }, { "pipeline": { "if": "ctx.service?.name == 'syslog'", "name": "syslog_pipeline" } }, { "fail": { "message": "This pipeline requires service.name to be either `syslog` or `apache_httpd`" } } ] } -------------------------------------------------- // CONSOLE The above example allows consumers to point to a single pipeline for all log based index requests. Based on the conditional, the correct pipeline will be called to process that type of data. This pattern works well with a <> defined in an index mapping template for all indexes that hold data that needs pre-index processing. [[conditionals-with-regex]] === Conditionals with the Regular Expressions The `if` conditional is implemented as a Painless script, which requires {painless}//painless-examples.html#modules-scripting-painless-regex[explicit support for regular expressions]. `script.painless.regex.enabled: true` must be set in `elasticsearch.yml` to use regular expressions in the `if` condition. If regular expressions are enabled, operators such as `=~` can be used against a `/pattern/` for conditions. For example: [source,js] -------------------------------------------------- PUT _ingest/pipeline/check_url { "processors": [ { "set": { "if": "ctx.href?.url =~ /^http[^s]/", "field": "href.insecure", "value": true } } ] } -------------------------------------------------- // CONSOLE [source,js] -------------------------------------------------- POST test/_doc/1?pipeline=check_url { "href": { "url": "http://www.elastic.co/" } } -------------------------------------------------- // CONSOLE // TEST[continued] Results in: //// Hidden example assertion: [source,js] -------------------------------------------------- GET test/_doc/1 -------------------------------------------------- // CONSOLE // TEST[continued] //// [source,js] -------------------------------------------------- { "_index": "test", "_type": "_doc", "_id": "1", "_version": 1, "_seq_no": 60, "_primary_term": 1, "found": true, "_source": { "href": { "insecure": true, "url": "http://www.elastic.co/" } } } -------------------------------------------------- // TESTRESPONSE[s/"_seq_no": \d+/"_seq_no" : $body._seq_no/ s/"_primary_term" : 1/"_primary_term" : $body._primary_term/] Regular expressions can be expensive and should be avoided if viable alternatives exist. For example in this case `startsWith` can be used to get the same result without using a regular expression: [source,js] -------------------------------------------------- PUT _ingest/pipeline/check_url { "processors": [ { "set": { "if": "ctx.href?.url != null && ctx.href.url.startsWith('http://')", "field": "href.insecure", "value": true } } ] } -------------------------------------------------- // CONSOLE [[handling-failure-in-pipelines]] == Handling Failures in Pipelines In its simplest use case, a pipeline defines a list of processors that are executed sequentially, and processing halts at the first exception. This behavior may not be desirable when failures are expected. For example, you may have logs that don't match the specified grok expression. Instead of halting execution, you may want to index such documents into a separate index. To enable this behavior, you can use the `on_failure` parameter. The `on_failure` parameter defines a list of processors to be executed immediately following the failed processor. You can specify this parameter at the pipeline level, as well as at the processor level. If a processor specifies an `on_failure` configuration, whether it is empty or not, any exceptions that are thrown by the processor are caught, and the pipeline continues executing the remaining processors. Because you can define further processors within the scope of an `on_failure` statement, you can nest failure handling. The following example defines a pipeline that renames the `foo` field in the processed document to `bar`. If the document does not contain the `foo` field, the processor attaches an error message to the document for later analysis within Elasticsearch. [source,js] -------------------------------------------------- { "description" : "my first pipeline with handled exceptions", "processors" : [ { "rename" : { "field" : "foo", "target_field" : "bar", "on_failure" : [ { "set" : { "field" : "error", "value" : "field \"foo\" does not exist, cannot rename to \"bar\"" } } ] } } ] } -------------------------------------------------- // NOTCONSOLE The following example defines an `on_failure` block on a whole pipeline to change the index to which failed documents get sent. [source,js] -------------------------------------------------- { "description" : "my first pipeline with handled exceptions", "processors" : [ ... ], "on_failure" : [ { "set" : { "field" : "_index", "value" : "failed-{{ _index }}" } } ] } -------------------------------------------------- // NOTCONSOLE Alternatively instead of defining behaviour in case of processor failure, it is also possible to ignore a failure and continue with the next processor by specifying the `ignore_failure` setting. In case in the example below the field `foo` doesn't exist the failure will be caught and the pipeline continues to execute, which in this case means that the pipeline does nothing. [source,js] -------------------------------------------------- { "description" : "my first pipeline with handled exceptions", "processors" : [ { "rename" : { "field" : "foo", "target_field" : "bar", "ignore_failure" : true } } ] } -------------------------------------------------- // NOTCONSOLE The `ignore_failure` can be set on any processor and defaults to `false`. [float] [[accessing-error-metadata]] === Accessing Error Metadata From Processors Handling Exceptions You may want to retrieve the actual error message that was thrown by a failed processor. To do so you can access metadata fields called `on_failure_message`, `on_failure_processor_type`, and `on_failure_processor_tag`. These fields are only accessible from within the context of an `on_failure` block. Here is an updated version of the example that you saw earlier. But instead of setting the error message manually, the example leverages the `on_failure_message` metadata field to provide the error message. [source,js] -------------------------------------------------- { "description" : "my first pipeline with handled exceptions", "processors" : [ { "rename" : { "field" : "foo", "to" : "bar", "on_failure" : [ { "set" : { "field" : "error", "value" : "{{ _ingest.on_failure_message }}" } } ] } } ] } -------------------------------------------------- // NOTCONSOLE [[ingest-processors]] == Processors All processors are defined in the following way within a pipeline definition: [source,js] -------------------------------------------------- { "PROCESSOR_NAME" : { ... processor configuration options ... } } -------------------------------------------------- // NOTCONSOLE Each processor defines its own configuration parameters, but all processors have the ability to declare `tag`, `on_failure` and `if` fields. These fields are optional. A `tag` is simply a string identifier of the specific instantiation of a certain processor in a pipeline. The `tag` field does not affect the processor's behavior, but is very useful for bookkeeping and tracing errors to specific processors. The `if` field must contain a script that returns a boolean value. If the script evaluates to `true` then the processor will be executed for the given document otherwise it will be skipped. The `if` field takes an object with the script fields defined in <> and accesses a read only version of the document via the same `ctx` variable used by scripts in the <>. [source,js] -------------------------------------------------- { "set": { "if": "ctx.foo == 'someValue'", "field": "found", "value": true } } -------------------------------------------------- // NOTCONSOLE See <> to learn more about the `if` field and conditional execution. See <> to learn more about the `on_failure` field and error handling in pipelines. The <> can be used to figure out what processors are available in a cluster. The <> will provide a per node list of what processors are available. Custom processors must be installed on all nodes. The put pipeline API will fail if a processor specified in a pipeline doesn't exist on all nodes. If you rely on custom processor plugins make sure to mark these plugins as mandatory by adding `plugin.mandatory` setting to the `config/elasticsearch.yml` file, for example: [source,yaml] -------------------------------------------------- plugin.mandatory: ingest-attachment,ingest-geoip -------------------------------------------------- A node will not start if either of these plugins are not available. The <> can be used to fetch ingest usage statistics, globally and on a per pipeline basis. Useful to find out which pipelines are used the most or spent the most time on preprocessing. [float] === Ingest Processor Plugins Additional ingest processors can be implemented and installed as Elasticsearch {plugins}/intro.html[plugins]. See {plugins}/ingest.html[Ingest plugins] for information about the available ingest plugins. include::processors/append.asciidoc[] include::processors/bytes.asciidoc[] include::processors/convert.asciidoc[] include::processors/date.asciidoc[] include::processors/date-index-name.asciidoc[] include::processors/dissect.asciidoc[] include::processors/dot-expand.asciidoc[] include::processors/drop.asciidoc[] include::processors/fail.asciidoc[] include::processors/foreach.asciidoc[] include::processors/grok.asciidoc[] include::processors/gsub.asciidoc[] include::processors/join.asciidoc[] include::processors/json.asciidoc[] include::processors/kv.asciidoc[] include::processors/pipeline.asciidoc[] include::processors/remove.asciidoc[] include::processors/rename.asciidoc[] include::processors/script.asciidoc[] include::processors/set.asciidoc[] include::processors/set-security-user.asciidoc[] include::processors/split.asciidoc[] include::processors/sort.asciidoc[] include::processors/trim.asciidoc[] include::processors/uppercase.asciidoc[] include::processors/url-decode.asciidoc[]