[role="xpack"] [testenv="platinum"] [[update-dfanalytics]] === Update {dfanalytics-jobs} API [subs="attributes"] ++++ Update {dfanalytics-jobs} ++++ Updates an existing {dfanalytics-job}. experimental[] [[ml-update-dfanalytics-request]] ==== {api-request-title} `POST _ml/data_frame/analytics//_update` [[ml-update-dfanalytics-prereq]] ==== {api-prereq-title} If the {es} {security-features} are enabled, you must have the following built-in roles and privileges: * `machine_learning_admin` * `kibana_admin` (UI only) * source indices: `read`, `view_index_metadata` * destination index: `read`, `create_index`, `manage` and `index` * cluster: `monitor` (UI only) For more information, see <> and <>. NOTE: The {dfanalytics-job} remembers which roles the user who created it had at the time of creation. When you start the job, it performs the analysis using those same roles. If you provide <>, those credentials are used instead. [[ml-update-dfanalytics-desc]] ==== {api-description-title} This API updates an existing {dfanalytics-job} that performs an analysis on the source indices and stores the outcome in a destination index. [[ml-update-dfanalytics-path-params]] ==== {api-path-parms-title} ``:: (Required, string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=job-id-data-frame-analytics-define] [role="child_attributes"] [[ml-update-dfanalytics-request-body]] ==== {api-request-body-title} `allow_lazy_start`:: (Optional, boolean) Specifies whether this job can start when there is insufficient {ml} node capacity for it to be immediately assigned to a node. The default is `false`; if a {ml} node with capacity to run the job cannot immediately be found, the API returns an error. However, this is also subject to the cluster-wide `xpack.ml.max_lazy_ml_nodes` setting. See <>. If this option is set to `true`, the API does not return an error and the job waits in the `starting` state until sufficient {ml} node capacity is available. `description`:: (Optional, string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=description-dfa] `model_memory_limit`:: (Optional, string) The approximate maximum amount of memory resources that are permitted for analytical processing. The default value for {dfanalytics-jobs} is `1gb`. If your `elasticsearch.yml` file contains an `xpack.ml.max_model_memory_limit` setting, an error occurs when you try to create {dfanalytics-jobs} that have `model_memory_limit` values greater than that setting. For more information, see <>. [[ml-update-dfanalytics-example]] ==== {api-examples-title} [[ml-update-dfanalytics-example-preprocess]] ===== Updating model memory limit example The following example shows how to update the model memory limit for the existing {dfanalytics} configuration. [source,console] -------------------------------------------------- POST _ml/data_frame/analytics/model-flight-delays/_update { "model_memory_limit": "200mb" } -------------------------------------------------- // TEST[skip:setup kibana sample data]