[role="xpack"] [testenv="basic"] [[inference-processor]] === {infer-cap} Processor Uses a pre-trained {dfanalytics} model to infer against the data that is being ingested in the pipeline. [[inference-options]] .{infer-cap} Options [options="header"] |====== | Name | Required | Default | Description | `model_id` | yes | - | (String) The ID of the model to load and infer against. | `target_field` | no | `ml.inference.` | (String) Field added to incoming documents to contain results objects. | `field_map` | yes | - | (Object) Maps the document field names to the known field names of the model. This mapping takes precedence over any default mappings provided in the model configuration. | `inference_config` | yes | - | (Object) Contains the inference type and its options. There are two types: <> and <>. include::common-options.asciidoc[] |====== [source,js] -------------------------------------------------- { "inference": { "model_id": "flight_delay_regression-1571767128603", "target_field": "FlightDelayMin_prediction_infer", "field_map": {}, "inference_config": { "regression": {} } } } -------------------------------------------------- // NOTCONSOLE [discrete] [[inference-processor-regression-opt]] ==== {regression-cap} configuration options Regression configuration for inference. `results_field`:: (Optional, string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field] `num_top_feature_importance_values`:: (Optional, integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-regression-num-top-feature-importance-values] [discrete] [[inference-processor-classification-opt]] ==== {classification-cap} configuration options Classification configuration for inference. `num_top_classes`:: (Optional, integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-classes] `num_top_feature_importance_values`:: (Optional, integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-num-top-feature-importance-values] `results_field`:: (Optional, string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-results-field] `top_classes_results_field`:: (Optional, string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-top-classes-results-field] `prediction_field_type`:: (Optional, string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=inference-config-classification-prediction-field-type] [discrete] [[inference-processor-config-example]] ==== `inference_config` examples [source,js] -------------------------------------------------- { "inference_config": { "regression": { "results_field": "my_regression" } } } -------------------------------------------------- // NOTCONSOLE This configuration specifies a `regression` inference and the results are written to the `my_regression` field contained in the `target_field` results object. [source,js] -------------------------------------------------- { "inference_config": { "classification": { "num_top_classes": 2, "results_field": "prediction", "top_classes_results_field": "probabilities" } } } -------------------------------------------------- // NOTCONSOLE This configuration specifies a `classification` inference. The number of categories for which the predicted probabilities are reported is 2 (`num_top_classes`). The result is written to the `prediction` field and the top classes to the `probabilities` field. Both fields are contained in the `target_field` results object. [discrete] [[inference-processor-feature-importance]] ==== {feat-imp-cap} object mapping Update your index mapping of the {feat-imp} result field as you can see below to get the full benefit of aggregating and searching for {ml-docs}/ml-feature-importance.html[{feat-imp}]. [source,js] -------------------------------------------------- "ml.inference.feature_importance": { "type": "nested", "dynamic": true, "properties": { "feature_name": { "type": "keyword" }, "importance": { "type": "double" } } } -------------------------------------------------- // NOTCONSOLE The mapping field name for {feat-imp} is compounded as follows: ``.``.`feature_importance` If `inference.tag` is not provided in the processor definition, it is not part of the field path. The `` defaults to `ml.inference`. For example, you provide a tag `foo` in the definition as you can see below: [source,js] -------------------------------------------------- { "tag": "foo", ... } -------------------------------------------------- // NOTCONSOLE The {feat-imp} value is written to the `ml.inference.foo.feature_importance` field. You can also specify a target field as follows: [source,js] -------------------------------------------------- { "tag": "foo", "target_field": "my_field" } -------------------------------------------------- // NOTCONSOLE In this case, {feat-imp} is exposed in the `my_field.foo.feature_importance` field.