[role="xpack"] [testenv="platinum"] [[get-dfanalytics-stats]] = Get {dfanalytics-jobs} statistics API [subs="attributes"] ++++ Get {dfanalytics-jobs} stats ++++ Retrieves usage information for {dfanalytics-jobs}. experimental[] [[ml-get-dfanalytics-stats-request]] == {api-request-title} `GET _ml/data_frame/analytics//_stats` + `GET _ml/data_frame/analytics/,/_stats` + `GET _ml/data_frame/analytics/_stats` + `GET _ml/data_frame/analytics/_all/_stats` + `GET _ml/data_frame/analytics/*/_stats` [[ml-get-dfanalytics-stats-prereq]] == {api-prereq-title} If the {es} {security-features} are enabled, you must have the following privileges: * cluster: `monitor_ml` For more information, see <> and <>. [[ml-get-dfanalytics-stats-path-params]] == {api-path-parms-title} ``:: (Optional, string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=job-id-data-frame-analytics-default] [[ml-get-dfanalytics-stats-query-params]] == {api-query-parms-title} `allow_no_match`:: (Optional, boolean) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=allow-no-match] `from`:: (Optional, integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=from] `size`:: (Optional, integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=size] `verbose`:: (Optional, boolean) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=verbose] [role="child_attributes"] [[ml-get-dfanalytics-stats-response-body]] == {api-response-body-title} `data_frame_analytics`:: (array) An array of objects that contain usage information for {dfanalytics-jobs}, which are sorted by the `id` value in ascending order. + .Properties of {dfanalytics-job} usage resources [%collapsible%open] ==== //Begin analysis_stats `analysis_stats`::: (object) An object containing information about the analysis job. + .Properties of `analysis_stats` [%collapsible%open] ===== //Begin classification_stats `classification_stats`:::: (object) An object containing information about the {classanalysis} job. + .Properties of `classification_stats` [%collapsible%open] ====== //Begin class_hyperparameters `hyperparameters`:::: (object) An object containing the parameters of the {classanalysis} job. + .Properties of `hyperparameters` [%collapsible%open] ======= `alpha`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-alpha] `class_assignment_objective`:::: (string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=class-assignment-objective] `downsample_factor`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-downsample-factor] `eta`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=eta] `eta_growth_rate_per_tree`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-eta-growth] `feature_bag_fraction`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction] `gamma`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=gamma] `lambda`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=lambda] `max_attempts_to_add_tree`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-max-attempts] `max_optimization_rounds_per_hyperparameter`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-max-optimization-rounds] `max_trees`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=max-trees] `num_folds`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-num-folds] `num_splits_per_feature`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-num-splits] `soft_tree_depth_limit`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-soft-limit] `soft_tree_depth_tolerance`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-soft-tolerance] ======= //End class_hyperparameters `iteration`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-iteration] `timestamp`:::: (date) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timestamp] //Begin class_timing_stats `timing_stats`:::: (object) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats] + .Properties of `timing_stats` [%collapsible%open] ======= `elapsed_time`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed] `iteration_time`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-iteration] ======= //End class_timing_stats //Begin class_validation_loss `validation_loss`:::: (object) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss] + .Properties of `validation_loss` [%collapsible%open] ======= `fold_values`:::: (array of strings) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-fold] `loss_type`:::: (string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-type] ======= //End class_validation_loss ====== //End classification_stats //Begin outlier_detection_stats `outlier_detection_stats`:::: (object) An object containing information about the {oldetection} job. + .Properties of `outlier_detection_stats` [%collapsible%open] ====== //Begin parameters `parameters`:::: (object) The list of job parameters specified by the user or determined by algorithmic heuristics. + .Properties of `parameters` [%collapsible%open] ======= `compute_feature_influence`:::: (boolean) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=compute-feature-influence] `feature_influence_threshold`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=feature-influence-threshold] `method`:::: (string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=method] `n_neighbors`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=n-neighbors] `outlier_fraction`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=outlier-fraction] `standardization_enabled`:::: (boolean) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=standardization-enabled] ======= //End parameters `timestamp`:::: (date) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timestamp] //Begin od_timing_stats `timing_stats`:::: (object) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats] + .Property of `timing_stats` [%collapsible%open] ======= `elapsed_time`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed] ======= //End od_timing_stats ====== //End outlier_detection_stats //Begin regression_stats `regression_stats`:::: (object) An object containing information about the {reganalysis}. + .Properties of `regression_stats` [%collapsible%open] ====== //Begin reg_hyperparameters `hyperparameters`:::: (object) An object containing the parameters of the {reganalysis}. + .Properties of `hyperparameters` [%collapsible%open] ======= `alpha`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-alpha] `downsample_factor`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-downsample-factor] `eta`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=eta] `eta_growth_rate_per_tree`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-eta-growth] `feature_bag_fraction`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction] `gamma`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=gamma] `lambda`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=lambda] `max_attempts_to_add_tree`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-max-attempts] `max_optimization_rounds_per_hyperparameter`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-max-optimization-rounds] `max_trees`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=max-trees] `num_folds`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-num-folds] `num_splits_per_feature`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-num-splits] `soft_tree_depth_limit`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-soft-limit] `soft_tree_depth_tolerance`:::: (double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-soft-tolerance] ======= //End reg_hyperparameters `iteration`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-iteration] `timestamp`:::: (date) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timestamp] //Begin reg_timing_stats `timing_stats`:::: (object) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats] + .Propertis of `timing_stats` [%collapsible%open] ======= `elapsed_time`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed] `iteration_time`:::: (integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-iteration] ======= //End reg_timing_stats //Begin reg_validation_loss `validation_loss`:::: (object) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss] + .Properties of `validation_loss` [%collapsible%open] ======= `fold_values`:::: (array of strings) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-fold] `loss_type`:::: (string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-type] ======= //End reg_validation_loss ====== //End regression_stats ===== //End analysis_stats `assignment_explanation`::: (string) For running jobs only, contains messages relating to the selection of a node to run the job. //Begin data_counts `data_counts`::: (object) An object that provides counts for the quantity of documents skipped, used in training, or available for testing. + .Properties of `data_counts` [%collapsible%open] ===== `skipped_docs_count`::: (integer) The number of documents that are skipped during the analysis because they contained values that are not supported by the analysis. For example, {oldetection} does not support missing fields so it skips documents with missing fields. Likewise, all types of analysis skip documents that contain arrays with more than one element. `test_docs_count`::: (integer) The number of documents that are not used for training the model and can be used for testing. `training_docs_count`::: (integer) The number of documents that are used for training the model. ===== //End data_counts `id`::: (string) The unique identifier of the {dfanalytics-job}. `memory_usage`::: (Optional, object) An object describing memory usage of the analytics. It is present only after the job is started and memory usage is reported. + .Properties of `memory_usage` [%collapsible%open] ===== `memory_reestimate_bytes`:::: (long) This value is present when the `status` is `hard_limit` and it is a new estimate of how much memory the job needs. `peak_usage_bytes`:::: (long) The number of bytes used at the highest peak of memory usage. `status`:::: (string) The memory usage status. May have one of the following values: + -- * `ok`: usage stayed below the limit. * `hard_limit`: usage surpassed the configured memory limit. -- `timestamp`:::: (date) The timestamp when memory usage was calculated. ===== `node`::: (object) Contains properties for the node that runs the job. This information is available only for running jobs. + .Properties of `node` [%collapsible%open] ===== `attributes`::: (object) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=node-attributes] `ephemeral_id`::: (string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=node-ephemeral-id] `id`::: (string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=node-id] `name`::: (string) The node name. `transport_address`::: (string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=node-transport-address] ===== `progress`::: (array) The progress report of the {dfanalytics-job} by phase. + .Properties of phase objects [%collapsible%open] ===== `phase`::: (string) Defines the phase of the {dfanalytics-job}. Possible phases: * `reindexing`, * `loading_data`, * `computing_outliers` (for {oldetection} only), * `feature_selection` (for {regression} and {classification} only), * `coarse_parameter_search` (for {regression} and {classification} only), * `fine_tuning_parameters` (for {regression} and {classification} only), * `final_training` (for {regression} and {classification} only), * `writing_results`. + To learn more about the different phases, refer to {ml-docs}/ml-dfa-phases.html[How a {dfanalytics} job works]. `progress_percent`::: (integer) The progress that the {dfanalytics-job} has made expressed in percentage. ===== `state`::: (string) The status of the {dfanalytics-job}, which can be one of the following values: `analyzing`, `failed`, `reindexing`, `started`, `starting`, `stopped`, `stopping`. ==== //End of data_frame_analytics [[ml-get-dfanalytics-stats-response-codes]] == {api-response-codes-title} `404` (Missing resources):: If `allow_no_match` is `false`, this code indicates that there are no resources that match the request or only partial matches for the request. [[ml-get-dfanalytics-stats-example]] == {api-examples-title} The following API retrieves usage information for the {ml-docs}/ecommerce-outliers.html[{oldetection} {dfanalytics-job} example]: [source,console] -------------------------------------------------- GET _ml/data_frame/analytics/ecommerce/_stats -------------------------------------------------- // TEST[skip:Kibana sample data] The API returns the following results: [source,console-result] ---- { "count" : 1, "data_frame_analytics" : [ { "id" : "ecommerce", "state" : "stopped", "progress" : [ { "phase" : "reindexing", "progress_percent" : 100 }, { "phase" : "loading_data", "progress_percent" : 100 }, { "phase" : "analyzing", "progress_percent" : 100 }, { "phase" : "writing_results", "progress_percent" : 100 } ], "data_counts" : { "training_docs_count" : 3321, "test_docs_count" : 0, "skipped_docs_count" : 0 }, "memory_usage" : { "timestamp" : 1586905058000, "peak_usage_bytes" : 279484 }, "analysis_stats" : { "outlier_detection_stats" : { "timestamp" : 1586905058000, "parameters" : { "n_neighbors" : 0, "method" : "ensemble", "compute_feature_influence" : true, "feature_influence_threshold" : 0.1, "outlier_fraction" : 0.05, "standardization_enabled" : true }, "timing_stats" : { "elapsed_time" : 245 } } } } ] } ----