[[analysis-ngram-tokenizer]] === NGram Tokenizer The `ngram` tokenizer first breaks text down into words whenever it encounters one of a list of specified characters, then it emits https://en.wikipedia.org/wiki/N-gram[N-grams] of each word of the specified length. N-grams are like a sliding window that moves across the word - a continuous sequence of characters of the specified length. They are useful for querying languages that don't use spaces or that have long compound words, like German. [float] === Example output With the default settings, the `ngram` tokenizer treats the initial text as a single token and produces N-grams with minimum length `1` and maximum length `2`: [source,js] --------------------------- POST _analyze { "tokenizer": "ngram", "text": "Quick Fox" } --------------------------- // CONSOLE ///////////////////// [source,js] ---------------------------- { "tokens": [ { "token": "Q", "start_offset": 0, "end_offset": 1, "type": "word", "position": 0 }, { "token": "Qu", "start_offset": 0, "end_offset": 2, "type": "word", "position": 1 }, { "token": "u", "start_offset": 1, "end_offset": 2, "type": "word", "position": 2 }, { "token": "ui", "start_offset": 1, "end_offset": 3, "type": "word", "position": 3 }, { "token": "i", "start_offset": 2, "end_offset": 3, "type": "word", "position": 4 }, { "token": "ic", "start_offset": 2, "end_offset": 4, "type": "word", "position": 5 }, { "token": "c", "start_offset": 3, "end_offset": 4, "type": "word", "position": 6 }, { "token": "ck", "start_offset": 3, "end_offset": 5, "type": "word", "position": 7 }, { "token": "k", "start_offset": 4, "end_offset": 5, "type": "word", "position": 8 }, { "token": "k ", "start_offset": 4, "end_offset": 6, "type": "word", "position": 9 }, { "token": " ", "start_offset": 5, "end_offset": 6, "type": "word", "position": 10 }, { "token": " F", "start_offset": 5, "end_offset": 7, "type": "word", "position": 11 }, { "token": "F", "start_offset": 6, "end_offset": 7, "type": "word", "position": 12 }, { "token": "Fo", "start_offset": 6, "end_offset": 8, "type": "word", "position": 13 }, { "token": "o", "start_offset": 7, "end_offset": 8, "type": "word", "position": 14 }, { "token": "ox", "start_offset": 7, "end_offset": 9, "type": "word", "position": 15 }, { "token": "x", "start_offset": 8, "end_offset": 9, "type": "word", "position": 16 } ] } ---------------------------- // TESTRESPONSE ///////////////////// The above sentence would produce the following terms: [source,text] --------------------------- [ Q, Qu, u, ui, i, ic, c, ck, k, "k ", " ", " F", F, Fo, o, ox, x ] --------------------------- [float] === Configuration The `ngram` tokenizer accepts the following parameters: [horizontal] `min_gram`:: Minimum length of characters in a gram. Defaults to `1`. `max_gram`:: Maximum length of characters in a gram. Defaults to `2`. `token_chars`:: Character classes that should be included in a token. Elasticsearch will split on characters that don't belong to the classes specified. Defaults to `[]` (keep all characters). + Character classes may be any of the following: + * `letter` -- for example `a`, `b`, `ï` or `京` * `digit` -- for example `3` or `7` * `whitespace` -- for example `" "` or `"\n"` * `punctuation` -- for example `!` or `"` * `symbol` -- for example `$` or `√` TIP: It usually makes sense to set `min_gram` and `max_gram` to the same value. The smaller the length, the more documents will match but the lower the quality of the matches. The longer the length, the more specific the matches. A tri-gram (length `3`) is a good place to start. [float] === Example configuration In this example, we configure the `ngram` tokenizer to treat letters and digits as tokens, and to produce tri-grams (grams of length `3`): [source,js] ---------------------------- PUT my_index { "settings": { "analysis": { "analyzer": { "my_analyzer": { "tokenizer": "my_tokenizer" } }, "tokenizer": { "my_tokenizer": { "type": "ngram", "min_gram": 3, "max_gram": 3, "token_chars": [ "letter", "digit" ] } } } } } GET _cluster/health?wait_for_status=yellow POST my_index/_analyze { "analyzer": "my_analyzer", "text": "2 Quick Foxes." } ---------------------------- // CONSOLE ///////////////////// [source,js] ---------------------------- { "tokens": [ { "token": "Qui", "start_offset": 2, "end_offset": 5, "type": "word", "position": 0 }, { "token": "uic", "start_offset": 3, "end_offset": 6, "type": "word", "position": 1 }, { "token": "ick", "start_offset": 4, "end_offset": 7, "type": "word", "position": 2 }, { "token": "Fox", "start_offset": 8, "end_offset": 11, "type": "word", "position": 3 }, { "token": "oxe", "start_offset": 9, "end_offset": 12, "type": "word", "position": 4 }, { "token": "xes", "start_offset": 10, "end_offset": 13, "type": "word", "position": 5 } ] } ---------------------------- // TESTRESPONSE ///////////////////// The above example produces the following terms: [source,text] --------------------------- [ Qui, uic, ick, Fox, oxe, xes ] ---------------------------