[role="xpack"] [testenv="basic"] [[sql-functions-search]] === Full-Text Search Functions Search functions should be used when performing full-text search, namely when the `MATCH` or `QUERY` predicates are being used. Outside a, so-called, search context, these functions will return default values such as `0` or `NULL`. [[sql-functions-search-match]] ==== `MATCH` .Synopsis: [source, sql] -------------------------------------------------- MATCH(field_exp<1>, constant_exp<2>[, options]<3>) -------------------------------------------------- *Input*: <1> field(s) to match <2> matching text <3> additional parameters; optional .Description: A full-text search option, in the form of a predicate, available in {es-sql} that gives the user control over powerful <> and <> {es} queries. The first parameter is the field or fields to match against. In case it receives one value only, {es-sql} will use a `match` query to perform the search: ["source","sql",subs="attributes,callouts,macros"] ---- include-tagged::{sql-specs}/docs/docs.csv-spec[simpleMatch] ---- However, it can also receive a list of fields and their corresponding optional `boost` value. In this case, {es-sql} will use a `multi_match` query to match the documents: ["source","sql",subs="attributes,callouts,macros"] ---- include-tagged::{sql-specs}/docs/docs.csv-spec[multiFieldsMatch] ---- NOTE: The `multi_match` query in {es} has the option of <> that gives preferential weight (in terms of scoring) to fields being searched in, using the `^` character. In the example above, the `name` field has a greater weight in the final score than the `author` field when searching for `frank dune` text in both of them. Both options above can be used in combination with the optional third parameter of the `MATCH()` predicate, where one can specify additional configuration parameters (separated by semicolon `;`) for either `match` or `multi_match` queries. For example: ["source","sql",subs="attributes,callouts,macros"] ---- include-tagged::{sql-specs}/docs/docs.csv-spec[optionalParamsForMatch] ---- In the more advanced example above, the `cutoff_frequency` parameter allows specifying an absolute or relative document frequency where high frequency terms are moved into an optional subquery and are only scored if one of the low frequency (below the cutoff) terms in the case of an `or` operator or all of the low frequency terms in the case of an `and` operator match. More about this you can find in the <> page. NOTE: The allowed optional parameters for a single-field `MATCH()` variant (for the `match` {es} query) are: `analyzer`, `auto_generate_synonyms_phrase_query`, `cutoff_frequency`, `lenient`, `fuzzy_transpositions`, `fuzzy_rewrite`, `minimum_should_match`, `operator`, `max_expansions`, `prefix_length`. NOTE: The allowed optional parameters for a multi-field `MATCH()` variant (for the `multi_match` {es} query) are: `analyzer`, `auto_generate_synonyms_phrase_query`, `cutoff_frequency`, `lenient`, `fuzzy_transpositions`, `fuzzy_rewrite`, `minimum_should_match`, `operator`, `max_expansions`, `prefix_length`, `slop`, `tie_breaker`, `type`. [[sql-functions-search-query]] ==== `QUERY` .Synopsis: [source, sql] -------------------------------------------------- QUERY(constant_exp<1>[, options]<2>) -------------------------------------------------- *Input*: <1> query text <2> additional parameters; optional .Description: Just like `MATCH`, `QUERY` is a full-text search predicate that gives the user control over the <> query in {es}. The first parameter is basically the input that will be passed as is to the `query_string` query, which means that anything that `query_string` accepts in its `query` field can be used here as well: ["source","sql",subs="attributes,callouts,macros"] ---- include-tagged::{sql-specs}/docs/docs.csv-spec[simpleQueryQuery] ---- A more advanced example, showing more of the features that `query_string` supports, of course possible with {es-sql}: ["source","sql",subs="attributes,callouts,macros"] ---- include-tagged::{sql-specs}/docs/docs.csv-spec[advancedQueryQuery] ---- The query above uses the `_exists_` query to select documents that have values in the `author` field, a range query for `page_count` and regex and fuzziness queries for the `name` field. If one needs to customize various configuration options that `query_string` exposes, this can be done using the second _optional_ parameter. Multiple settings can be specified separated by a semicolon `;`: ["source","sql",subs="attributes,callouts,macros"] ---- include-tagged::{sql-specs}/docs/docs.csv-spec[optionalParameterQuery] ---- NOTE: The allowed optional parameters for `QUERY()` are: `allow_leading_wildcard`, `analyze_wildcard`, `analyzer`, `auto_generate_synonyms_phrase_query`, `default_field`, `default_operator`, `enable_position_increments`, `escape`, `fuzzy_max_expansions`, `fuzzy_prefix_length`, `fuzzy_rewrite`, `fuzzy_transpositions`, `lenient`, `locale`, `lowercase_expanded_terms`, `max_determinized_states`, `minimum_should_match`, `phrase_slop`, `rewrite`, `quote_analyzer`, `quote_field_suffix`, `tie_breaker`, `time_zone`, `type`. [[sql-functions-search-score]] ==== `SCORE` .Synopsis: [source, sql] -------------------------------------------------- SCORE() -------------------------------------------------- *Input*: _none_ *Output*: `double` numeric value .Description: Returns the {defguide}/relevance-intro.html[relevance] of a given input to the executed query. The higher score, the more relevant the data. NOTE: When doing multiple text queries in the `WHERE` clause then, their scores will be combined using the same rules as {es}'s <>. Typically `SCORE` is used for ordering the results of a query based on their relevance: ["source","sql",subs="attributes,callouts,macros"] ---- include-tagged::{sql-specs}/docs/docs.csv-spec[orderByScore] ---- However, it is perfectly fine to return the score without sorting by it: ["source","sql",subs="attributes,callouts,macros"] ---- include-tagged::{sql-specs}/docs/docs.csv-spec[scoreWithMatch] ----