[[search-aggregations-metrics-percentile-rank-aggregation]] === Percentile Ranks Aggregation A `multi-value` metrics aggregation that calculates one or more percentile ranks over numeric values extracted from the aggregated documents. These values can be extracted either from specific numeric fields in the documents, or be generated by a provided script. [NOTE] ================================================== Please see <> and <> for advice regarding approximation and memory use of the percentile ranks aggregation ================================================== Percentile rank show the percentage of observed values which are below certain value. For example, if a value is greater than or equal to 95% of the observed values it is said to be at the 95th percentile rank. Assume your data consists of website load times. You may have a service agreement that 95% of page loads completely within 15ms and 99% of page loads complete within 30ms. Let's look at a range of percentiles representing load time: [source,js] -------------------------------------------------- { "aggs" : { "load_time_outlier" : { "percentile_ranks" : { "field" : "load_time", <1> "values" : [15, 30] } } } } -------------------------------------------------- <1> The field `load_time` must be a numeric field The response will look like this: [source,js] -------------------------------------------------- { ... "aggregations": { "load_time_outlier": { "values" : { "15": 92, "30": 100 } } } } -------------------------------------------------- From this information you can determine you are hitting the 99% load time target but not quite hitting the 95% load time target ==== Keyed Response By default the `keyed` flag is set to `true` associates a unique string key with each bucket and returns the ranges as a hash rather than an array. Setting the `keyed` flag to `false` will disable this behavior: [source,js] -------------------------------------------------- POST bank/account/_search?size=0 { "aggs": { "balance_outlier": { "percentile_ranks": { "field": "balance", "values": [25000, 50000], "keyed": false } } } } -------------------------------------------------- // CONSOLE // TEST[setup:bank] Response: [source,js] -------------------------------------------------- { ... "aggregations": { "balance_outlier": { "values": [ { "key": 25000.0, "value": 48.537724935732655 }, { "key": 50000.0, "value": 99.85567010309278 } ] } } } -------------------------------------------------- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/] // TESTRESPONSE[s/48.537724935732655/$body.aggregations.balance_outlier.values.0.value/] // TESTRESPONSE[s/99.85567010309278/$body.aggregations.balance_outlier.values.1.value/] ==== Script The percentile rank metric supports scripting. For example, if our load times are in milliseconds but we want to specify values in seconds, we could use a script to convert them on-the-fly: [source,js] -------------------------------------------------- { "aggs" : { "load_time_outlier" : { "percentile_ranks" : { "values" : [3, 5], "script" : { "lang": "painless", "source": "doc['load_time'].value / params.timeUnit", <1> "params" : { "timeUnit" : 1000 <2> } } } } } } -------------------------------------------------- <1> The `field` parameter is replaced with a `script` parameter, which uses the script to generate values which percentile ranks are calculated on <2> Scripting supports parameterized input just like any other script This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax: [source,js] -------------------------------------------------- { "aggs" : { "load_time_outlier" : { "percentile_ranks" : { "values" : [3, 5], "script" : { "id": "my_script", "params" : { "timeUnit" : 1000 } } } } } } -------------------------------------------------- ==== HDR Histogram experimental[] https://github.com/HdrHistogram/HdrHistogram[HDR Histogram] (High Dynamic Range Histogram) is an alternative implementation that can be useful when calculating percentile ranks for latency measurements as it can be faster than the t-digest implementation with the trade-off of a larger memory footprint. This implementation maintains a fixed worse-case percentage error (specified as a number of significant digits). This means that if data is recorded with values from 1 microsecond up to 1 hour (3,600,000,000 microseconds) in a histogram set to 3 significant digits, it will maintain a value resolution of 1 microsecond for values up to 1 millisecond and 3.6 seconds (or better) for the maximum tracked value (1 hour). The HDR Histogram can be used by specifying the `method` parameter in the request: [source,js] -------------------------------------------------- { "aggs" : { "load_time_outlier" : { "percentile_ranks" : { "field" : "load_time", "values" : [15, 30], "hdr": { <1> "number_of_significant_value_digits" : 3 <2> } } } } } -------------------------------------------------- <1> `hdr` object indicates that HDR Histogram should be used to calculate the percentiles and specific settings for this algorithm can be specified inside the object <2> `number_of_significant_value_digits` specifies the resolution of values for the histogram in number of significant digits The HDRHistogram only supports positive values and will error if it is passed a negative value. It is also not a good idea to use the HDRHistogram if the range of values is unknown as this could lead to high memory usage. ==== Missing value The `missing` parameter defines how documents that are missing a value should be treated. By default they will be ignored but it is also possible to treat them as if they had a value. [source,js] -------------------------------------------------- { "aggs" : { "grade_ranks" : { "percentile_ranks" : { "field" : "grade", "missing": 10 <1> } } } } -------------------------------------------------- <1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `10`.