[role="xpack"]
[testenv="platinum"]
[[ml-get-snapshot]]
=== Get model snapshots API
++++
Get model snapshots
++++
Retrieves information about model snapshots.
[[ml-get-snapshot-request]]
==== {api-request-title}
`GET _ml/anomaly_detectors//model_snapshots` +
`GET _ml/anomaly_detectors//model_snapshots/`
[[ml-get-snapshot-prereqs]]
==== {api-prereq-title}
* If the {es} {security-features} are enabled, you must have `monitor_ml`,
`monitor`, `manage_ml`, or `manage` cluster privileges to use this API. See
<>.
[[ml-get-snapshot-path-parms]]
==== {api-path-parms-title}
``::
(Required, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=job-id-anomaly-detection]
``::
(Optional, string)
include::{docdir}/ml/ml-shared.asciidoc[tag=snapshot-id]
+
--
If you do not specify this optional parameter, the API returns information about
all model snapshots.
--
[[ml-get-snapshot-request-body]]
==== {api-request-body-title}
`desc`::
(Optional, boolean) If true, the results are sorted in descending order.
`end`::
(Optional, date) Returns snapshots with timestamps earlier than this time.
`from`::
(Optional, integer) Skips the specified number of snapshots.
`size`::
(Optional, integer) Specifies the maximum number of snapshots to obtain.
`sort`::
(Optional, string) Specifies the sort field for the requested snapshots. By
default, the snapshots are sorted by their timestamp.
`start`::
(Optional, string) Returns snapshots with timestamps after this time.
[[ml-get-snapshot-results]]
==== {api-response-body-title}
The API returns an array of model snapshot objects, which have the following
properties:
`description`::
(string) An optional description of the job.
`job_id`::
(string) A numerical character string that uniquely identifies the job that
the snapshot was created for.
`latest_record_time_stamp`::
(date) The timestamp of the latest processed record.
`latest_result_time_stamp`::
(date) The timestamp of the latest bucket result.
`min_version`::
(string) The minimum version required to be able to restore the model snapshot.
`model_size_stats`::
(object) Summary information describing the model.
`model_size_stats`.`bucket_allocation_failures_count`:::
(long) The number of buckets for which entities were not processed due to
memory limit constraints.
`model_size_stats`.`job_id`:::
(string)
include::{docdir}/ml/ml-shared.asciidoc[tag=job-id-anomaly-detection]
`model_size_stats`.`log_time`:::
(date) The timestamp that the `model_size_stats` were recorded, according to
server-time.
`model_size_stats`.`memory_status`:::
(string) The status of the memory in relation to its `model_memory_limit`.
Contains one of the following values.
+
--
* `hard_limit`: The internal models require more space that the configured
memory limit. Some incoming data could not be processed.
* `ok`: The internal models stayed below the configured value.
* `soft_limit`: The internal models require more than 60% of the configured
memory limit and more aggressive pruning will be performed in order to try to
reclaim space.
--
`model_size_stats`.`model_bytes`:::
(long) An approximation of the memory resources required for this analysis.
`model_size_stats`.`model_bytes_exceeded`:::
(long) The number of bytes over the high limit for memory usage at the last allocation failure.
`model_size_stats`.`model_bytes_memory_limit`:::
(long) The upper limit for memory usage, checked on increasing values.
`model_size_stats`.`result_type`:::
(string) Internal. This value is always set to `model_size_stats`.
`model_size_stats`.`timestamp`:::
(date) The timestamp that the `model_size_stats` were recorded, according to
the bucket timestamp of the data.
`model_size_stats`.`total_by_field_count`:::
(long) The number of _by_ field values analyzed. Note that these are counted
separately for each detector and partition.
`model_size_stats`.`total_over_field_count`:::
(long) The number of _over_ field values analyzed. Note that these are counted
separately for each detector and partition.
`model_size_stats`.`total_partition_field_count`:::
(long) The number of _partition_ field values analyzed.
`retain`::
(boolean)
include::{docdir}/ml/ml-shared.asciidoc[tag=retain]
`snapshot_id`::
(string)
include::{docdir}/ml/ml-shared.asciidoc[tag=snapshot-id]
`snapshot_doc_count`::
(long) For internal use only.
`timestamp`::
(date) The creation timestamp for the snapshot.
[[ml-get-snapshot-example]]
==== {api-examples-title}
[source,console]
--------------------------------------------------
GET _ml/anomaly_detectors/high_sum_total_sales/model_snapshots
{
"start": "1575402236000"
}
--------------------------------------------------
// TEST[skip:Kibana sample data]
In this example, the API provides a single result:
[source,js]
----
{
"count" : 1,
"model_snapshots" : [
{
"job_id" : "high_sum_total_sales",
"min_version" : "6.4.0",
"timestamp" : 1575402237000,
"description" : "State persisted due to job close at 2019-12-03T19:43:57+0000",
"snapshot_id" : "1575402237",
"snapshot_doc_count" : 1,
"model_size_stats" : {
"job_id" : "high_sum_total_sales",
"result_type" : "model_size_stats",
"model_bytes" : 1638816,
"model_bytes_exceeded" : 0,
"model_bytes_memory_limit" : 10485760,
"total_by_field_count" : 3,
"total_over_field_count" : 3320,
"total_partition_field_count" : 2,
"bucket_allocation_failures_count" : 0,
"memory_status" : "ok",
"log_time" : 1575402237000,
"timestamp" : 1576965600000
},
"latest_record_time_stamp" : 1576971072000,
"latest_result_time_stamp" : 1576965600000,
"retain" : false
}
]
}
----