[[search-aggregations-metrics-stats-aggregation]] === Stats Aggregation A `multi-value` metrics aggregation that computes stats over numeric values extracted from the aggregated documents. These values can be extracted either from specific numeric fields in the documents, or be generated by a provided script. The stats that are returned consist of: `min`, `max`, `sum`, `count` and `avg`. Assuming the data consists of documents representing exams grades (between 0 and 100) of students [source,console] -------------------------------------------------- POST /exams/_search?size=0 { "aggs": { "grades_stats": { "stats": { "field": "grade" } } } } -------------------------------------------------- // TEST[setup:exams] The above aggregation computes the grades statistics over all documents. The aggregation type is `stats` and the `field` setting defines the numeric field of the documents the stats will be computed on. The above will return the following: [source,console-result] -------------------------------------------------- { ... "aggregations": { "grades_stats": { "count": 2, "min": 50.0, "max": 100.0, "avg": 75.0, "sum": 150.0 } } } -------------------------------------------------- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/] The name of the aggregation (`grades_stats` above) also serves as the key by which the aggregation result can be retrieved from the returned response. ==== Script Computing the grades stats based on a script: [source,console] -------------------------------------------------- POST /exams/_search?size=0 { "aggs": { "grades_stats": { "stats": { "script": { "lang": "painless", "source": "doc['grade'].value" } } } } } -------------------------------------------------- // TEST[setup:exams] This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax: [source,console] -------------------------------------------------- POST /exams/_search?size=0 { "aggs": { "grades_stats": { "stats": { "script": { "id": "my_script", "params": { "field": "grade" } } } } } } -------------------------------------------------- // TEST[setup:exams,stored_example_script] ===== Value Script It turned out that the exam was way above the level of the students and a grade correction needs to be applied. We can use a value script to get the new stats: [source,console] -------------------------------------------------- POST /exams/_search?size=0 { "aggs": { "grades_stats": { "stats": { "field": "grade", "script": { "lang": "painless", "source": "_value * params.correction", "params": { "correction": 1.2 } } } } } } -------------------------------------------------- // TEST[setup:exams] ==== Missing value The `missing` parameter defines how documents that are missing a value should be treated. By default they will be ignored but it is also possible to treat them as if they had a value. [source,console] -------------------------------------------------- POST /exams/_search?size=0 { "aggs": { "grades_stats": { "stats": { "field": "grade", "missing": 0 <1> } } } } -------------------------------------------------- // TEST[setup:exams] <1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `0`.