[[painless-operators-numeric]] === Operators: Numeric [[post-increment-operator]] ==== Post Increment Use the `post increment operator '++'` to INCREASE the value of a numeric type variable/field by `1`. An extra implicit cast is necessary to return the promoted numeric type value to the original numeric type value of the variable/field for the following types: `byte`, `short`, and `char`. If a variable/field is read as part of an expression the value is loaded prior to the increment. *Errors* * If the variable/field is a non-numeric type. *Grammar* [source,ANTLR4] ---- post_increment: ( variable | field ) '++'; ---- *Promotion* [options="header",cols="<1,<1,<1"] |==== | original | promoted | implicit | byte | int | byte | short | int | short | char | int | char | int | int | | long | long | | float | float | | double | double | | def | def | |==== *Examples* * Post increment with different numeric types. + [source,Painless] ---- short i = 0; <1> i++; <2> long j = 1; <3> long k; <4> k = j++; <5> ---- + <1> declare `short i`; store `short 0` to `i` <2> load from `i` -> `short 0`; promote `short 0`: result `int`; add `int 0` and `int 1` -> `int 1`; implicit cast `int 1` to `short 1`; store `short 1` to `i` <3> declare `long j`; implicit cast `int 1` to `long 1` -> `long 1`; store `long 1` to `j` <4> declare `long k`; store default `long 0` to `k` <5> load from `j` -> `long 1`; store `long 1` to `k`; add `long 1` and `long 1` -> `long 2`; store `long 2` to `j` + * Post increment with the `def` type. + [source,Painless] ---- def x = 1; <1> x++; <2> ---- + <1> declare `def x`; implicit cast `int 1` to `def` -> `def`; store `def` to `x` <2> load from `x` -> `def`; implicit cast `def` to `int 1`; add `int 1` and `int 1` -> `int 2`; implicit cast `int 2` to `def`; store `def` to `x` [[post-decrement-operator]] ==== Post Decrement Use the `post decrement operator '--'` to DECREASE the value of a numeric type variable/field by `1`. An extra implicit cast is necessary to return the promoted numeric type value to the original numeric type value of the variable/field for the following types: `byte`, `short`, and `char`. If a variable/field is read as part of an expression the value is loaded prior to the decrement. *Errors* * If the variable/field is a non-numeric type. *Grammar* [source,ANTLR4] ---- post_decrement: ( variable | field ) '--'; ---- *Promotion* [options="header",cols="<1,<1,<1"] |==== | original | promoted | implicit | byte | int | byte | short | int | short | char | int | char | int | int | | long | long | | float | float | | double | double | | def | def | |==== *Examples* * Post decrement with different numeric types. + [source,Painless] ---- short i = 0; <1> i--; <2> long j = 1; <3> long k; <4> k = j--; <5> ---- + <1> declare `short i`; store `short 0` to `i` <2> load from `i` -> `short 0`; promote `short 0`: result `int`; subtract `int 1` from `int 0` -> `int -1`; implicit cast `int -1` to `short -1`; store `short -1` to `i` <3> declare `long j`; implicit cast `int 1` to `long 1` -> `long 1`; store `long 1` to `j` <4> declare `long k`; store default `long 0` to `k` <5> load from `j` -> `long 1`; store `long 1` to `k`; subtract `long 1` from `long 1` -> `long 0`; store `long 0` to `j` + * Post decrement with the `def` type. + [source,Painless] ---- def x = 1; <1> x--; <2> ---- + <1> declare `def x`; implicit cast `int 1` to `def` -> `def`; store `def` to `x` <2> load from `x` -> `def`; implicit cast `def` to `int 1`; subtract `int 1` from `int 1` -> `int 0`; implicit cast `int 0` to `def`; store `def` to `x` [[pre-increment-operator]] ==== Pre Increment Use the `pre increment operator '++'` to INCREASE the value of a numeric type variable/field by `1`. An extra implicit cast is necessary to return the promoted numeric type value to the original numeric type value of the variable/field for the following types: `byte`, `short`, and `char`. If a variable/field is read as part of an expression the value is loaded after the increment. *Errors* * If the variable/field is a non-numeric type. *Grammar* [source,ANTLR4] ---- pre_increment: '++' ( variable | field ); ---- *Promotion* [options="header",cols="<1,<1,<1"] |==== | original | promoted | implicit | byte | int | byte | short | int | short | char | int | char | int | int | | long | long | | float | float | | double | double | | def | def | |==== *Examples* * Pre increment with different numeric types. + [source,Painless] ---- short i = 0; <1> ++i; <2> long j = 1; <3> long k; <4> k = ++j; <5> ---- + <1> declare `short i`; store `short 0` to `i` <2> load from `i` -> `short 0`; promote `short 0`: result `int`; add `int 0` and `int 1` -> `int 1`; implicit cast `int 1` to `short 1`; store `short 1` to `i` <3> declare `long j`; implicit cast `int 1` to `long 1` -> `long 1`; store `long 1` to `j` <4> declare `long k`; store default `long 0` to `k` <5> load from `j` -> `long 1`; add `long 1` and `long 1` -> `long 2`; store `long 2` to `j`; store `long 2` to `k` + * Pre increment with the `def` type. + [source,Painless] ---- def x = 1; <1> ++x; <2> ---- + <1> declare `def x`; implicit cast `int 1` to `def` -> `def`; store `def` to `x` <2> load from `x` -> `def`; implicit cast `def` to `int 1`; add `int 1` and `int 1` -> `int 2`; implicit cast `int 2` to `def`; store `def` to `x` [[pre-decrement-operator]] ==== Pre Decrement Use the `pre decrement operator '--'` to DECREASE the value of a numeric type variable/field by `1`. An extra implicit cast is necessary to return the promoted numeric type value to the original numeric type value of the variable/field for the following types: `byte`, `short`, and `char`. If a variable/field is read as part of an expression the value is loaded after the decrement. *Errors* * If the variable/field is a non-numeric type. *Grammar* [source,ANTLR4] ---- pre_increment: '--' ( variable | field ); ---- *Promotion* [options="header",cols="<1,<1,<1"] |==== | original | promoted | implicit | byte | int | byte | short | int | short | char | int | char | int | int | | long | long | | float | float | | double | double | | def | def | |==== *Examples* * Pre decrement with different numeric types. + [source,Painless] ---- short i = 0; <1> --i; <2> long j = 1; <3> long k; <4> k = --j; <5> ---- + <1> declare `short i`; store `short 0` to `i` <2> load from `i` -> `short 0`; promote `short 0`: result `int`; subtract `int 1` from `int 0` -> `int -1`; implicit cast `int -1` to `short -1`; store `short -1` to `i` <3> declare `long j`; implicit cast `int 1` to `long 1` -> `long 1`; store `long 1` to `j` <4> declare `long k`; store default `long 0` to `k` <5> load from `j` -> `long 1`; subtract `long 1` from `long 1` -> `long 0`; store `long 0` to `j` store `long 0` to `k`; + * Pre decrement operator with the `def` type. + [source,Painless] ---- def x = 1; <1> --x; <2> ---- + <1> declare `def x`; implicit cast `int 1` to `def` -> `def`; store `def` to `x` <2> load from `x` -> `def`; implicit cast `def` to `int 1`; subtract `int 1` from `int 1` -> `int 0`; implicit cast `int 0` to `def`; store `def` to `x` [[unary-positive-operator]] ==== Unary Positive Use the `unary positive operator '+'` to the preserve the IDENTITY of a numeric type value. *Errors* * If the value is a non-numeric type. *Grammar* [source,ANTLR4] ---- unary_positive: '+' expression; ---- *Examples* * Unary positive with different numeric types. + [source,Painless] ---- int x = +1; <1> long y = +x; <2> ---- + <1> declare `int x`; identity `int 1` -> `int 1`; store `int 1` to `x` <2> declare `long y`; load from `x` -> `int 1`; identity `int 1` -> `int 1`; implicit cast `int 1` to `long 1` -> `long 1`; store `long 1` to `y` + * Unary positive with the `def` type. + [source,Painless] ---- def z = +1; <1> int i = +z; <2> ---- <1> declare `def z`; identity `int 1` -> `int 1`; implicit cast `int 1` to `def`; store `def` to `z` <2> declare `int i`; load from `z` -> `def`; implicit cast `def` to `int 1`; identity `int 1` -> `int 1`; store `int 1` to `i`; [[unary-negative-operator]] ==== Unary Negative Use the `unary negative operator '-'` to NEGATE a numeric type value. *Errors* * If the value is a non-numeric type. *Grammar* [source,ANTLR4] ---- unary_negative: '-' expression; ---- *Examples* * Unary negative with different numeric types. + [source,Painless] ---- int x = -1; <1> long y = -x; <2> ---- + <1> declare `int x`; negate `int 1` -> `int -1`; store `int -1` to `x` <2> declare `long y`; load from `x` -> `int 1`; negate `int -1` -> `int 1`; implicit cast `int 1` to `long 1` -> `long 1`; store `long 1` to `y` + * Unary negative with the `def` type. + [source,Painless] ---- def z = -1; <1> int i = -z; <2> ---- <1> declare `def z`; negate `int 1` -> `int -1`; implicit cast `int -1` to `def`; store `def` to `z` <2> declare `int i`; load from `z` -> `def`; implicit cast `def` to `int -1`; negate `int -1` -> `int 1`; store `int 1` to `i`; [[bitwise-not-operator]] ==== Bitwise Not Use the `bitwise not operator '~'` to NOT each bit in an integer type value where a `1-bit` is flipped to a resultant `0-bit` and a `0-bit` is flipped to a resultant `1-bit`. *Errors* * If the value is a non-integer type. *Bits* [options="header",cols="<1,<1"] |==== | original | result | 1 | 0 | 0 | 1 |==== *Grammar* [source,ANTLR4] ---- bitwise_not: '~' expression; ---- *Promotion* [options="header",cols="<1,<1"] |==== | original | promoted | byte | int | short | int | char | int | int | int | long | long | def | def |==== *Examples* * Bitwise not with different numeric types. + [source,Painless] ---- byte b = 1; <1> int i = ~b; <2> long l = ~i; <3> ---- + <1> declare `byte x`; store `byte 1` to b <2> declare `int i`; load from `b` -> `byte 1`; implicit cast `byte 1` to `int 1` -> `int 1`; bitwise not `int 1` -> `int -2`; store `int -2` to `i` <3> declare `long l`; load from `i` -> `int -2`; implicit cast `int -2` to `long -2` -> `long -2`; bitwise not `long -2` -> `long 1`; store `long 1` to `l` + * Bitwise not with the `def` type. + [source,Painless] ---- def d = 1; <1> def e = ~d; <2> ---- + <1> declare `def d`; implicit cast `int 1` to `def` -> `def`; store `def` to `d`; <2> declare `def e`; load from `d` -> `def`; implicit cast `def` to `int 1` -> `int 1`; bitwise not `int 1` -> `int -2`; implicit cast `int 1` to `def` -> `def`; store `def` to `e` [[multiplication-operator]] ==== Multiplication Use the `multiplication operator '*'` to MULTIPLY together two numeric type values. Rules for resultant overflow and NaN values follow the JVM specification. *Errors* * If either of the values is a non-numeric type. *Grammar* [source,ANTLR4] ---- multiplication: expression '*' expression; ---- *Promotion* [cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"] |==== | | byte | short | char | int | long | float | double | def | byte | int | int | int | int | long | float | double | def | short | int | int | int | int | long | float | double | def | char | int | int | int | int | long | float | double | def | int | int | int | int | int | long | float | double | def | long | long | long | long | long | long | float | double | def | float | float | float | float | float | float | float | double | def | double | double | double | double | double | double | double | double | def | def | def | def | def | def | def | def | def | def |==== *Examples* * Multiplication with different numeric types. + [source,Painless] ---- int i = 5*4; <1> double d = i*7.0; <2> ---- + <1> declare `int i`; multiply `int 4` by `int 5` -> `int 20`; store `int 20` in `i` <2> declare `double d`; load from `int i` -> `int 20`; promote `int 20` and `double 7.0`: result `double`; implicit cast `int 20` to `double 20.0` -> `double 20.0`; multiply `double 20.0` by `double 7.0` -> `double 140.0`; store `double 140.0` to `d` + * Multiplication with the `def` type. + [source,Painless] ---- def x = 5*4; <1> def y = x*2; <2> ---- <1> declare `def x`; multiply `int 5` by `int 4` -> `int 20`; implicit cast `int 20` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 20`; multiply `int 20` by `int 2` -> `int 40`; implicit cast `int 40` to `def` -> `def`; store `def` to `y` [[division-operator]] ==== Division Use the `division operator '/'` to DIVIDE one numeric type value by another. Rules for NaN values and division by zero follow the JVM specification. Division with integer values drops the remainder of the resultant value. *Errors* * If either of the values is a non-numeric type. * If a left-hand side integer type value is divided by a right-hand side integer type value of `0`. *Grammar* [source,ANTLR4] ---- division: expression '/' expression; ---- *Promotion* [cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"] |==== | | byte | short | char | int | long | float | double | def | byte | int | int | int | int | long | float | double | def | short | int | int | int | int | long | float | double | def | char | int | int | int | int | long | float | double | def | int | int | int | int | int | long | float | double | def | long | long | long | long | long | long | float | double | def | float | float | float | float | float | float | float | double | def | double | double | double | double | double | double | double | double | def | def | def | def | def | def | def | def | def | def |==== *Examples* * Division with different numeric types. + [source,Painless] ---- int i = 29/4; <1> double d = i/7.0; <2> ---- + <1> declare `int i`; divide `int 29` by `int 4` -> `int 7`; store `int 7` in `i` <2> declare `double d`; load from `int i` -> `int 7`; promote `int 7` and `double 7.0`: result `double`; implicit cast `int 7` to `double 7.0` -> `double 7.0`; divide `double 7.0` by `double 7.0` -> `double 1.0`; store `double 1.0` to `d` + * Division with the `def` type. + [source,Painless] ---- def x = 5/4; <1> def y = x/2; <2> ---- <1> declare `def x`; divide `int 5` by `int 4` -> `int 1`; implicit cast `int 1` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 1`; divide `int 1` by `int 2` -> `int 0`; implicit cast `int 0` to `def` -> `def`; store `def` to `y` [[remainder-operator]] ==== Remainder Use the `remainder operator '%'` to calculate the REMAINDER for division between two numeric type values. Rules for NaN values and division by zero follow the JVM specification. *Errors* * If either of the values is a non-numeric type. *Grammar* [source,ANTLR4] ---- remainder: expression '%' expression; ---- *Promotion* [cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"] |==== | | byte | short | char | int | long | float | double | def | byte | int | int | int | int | long | float | double | def | short | int | int | int | int | long | float | double | def | char | int | int | int | int | long | float | double | def | int | int | int | int | int | long | float | double | def | long | long | long | long | long | long | float | double | def | float | float | float | float | float | float | float | double | def | double | double | double | double | double | double | double | double | def | def | def | def | def | def | def | def | def | def |==== *Examples* * Remainder with different numeric types. + [source,Painless] ---- int i = 29%4; <1> double d = i%7.0; <2> ---- + <1> declare `int i`; remainder `int 29` by `int 4` -> `int 1`; store `int 7` in `i` <2> declare `double d`; load from `int i` -> `int 1`; promote `int 1` and `double 7.0`: result `double`; implicit cast `int 1` to `double 1.0` -> `double 1.0`; remainder `double 1.0` by `double 7.0` -> `double 1.0`; store `double 1.0` to `d` + * Remainder with the `def` type. + [source,Painless] ---- def x = 5%4; <1> def y = x%2; <2> ---- <1> declare `def x`; remainder `int 5` by `int 4` -> `int 1`; implicit cast `int 1` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 1`; remainder `int 1` by `int 2` -> `int 1`; implicit cast `int 1` to `def` -> `def`; store `def` to `y` [[addition-operator]] ==== Addition Use the `addition operator '+'` to ADD together two numeric type values. Rules for resultant overflow and NaN values follow the JVM specification. *Errors* * If either of the values is a non-numeric type. *Grammar* [source,ANTLR4] ---- addition: expression '+' expression; ---- *Promotion* [cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"] |==== | | byte | short | char | int | long | float | double | def | byte | int | int | int | int | long | float | double | def | short | int | int | int | int | long | float | double | def | char | int | int | int | int | long | float | double | def | int | int | int | int | int | long | float | double | def | long | long | long | long | long | long | float | double | def | float | float | float | float | float | float | float | double | def | double | double | double | double | double | double | double | double | def | def | def | def | def | def | def | def | def | def |==== *Examples* * Addition operator with different numeric types. + [source,Painless] ---- int i = 29+4; <1> double d = i+7.0; <2> ---- + <1> declare `int i`; add `int 29` and `int 4` -> `int 33`; store `int 33` in `i` <2> declare `double d`; load from `int i` -> `int 33`; promote `int 33` and `double 7.0`: result `double`; implicit cast `int 33` to `double 33.0` -> `double 33.0`; add `double 33.0` and `double 7.0` -> `double 40.0`; store `double 40.0` to `d` + * Addition with the `def` type. + [source,Painless] ---- def x = 5+4; <1> def y = x+2; <2> ---- <1> declare `def x`; add `int 5` and `int 4` -> `int 9`; implicit cast `int 9` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 9`; add `int 9` and `int 2` -> `int 11`; implicit cast `int 11` to `def` -> `def`; store `def` to `y` [[subtraction-operator]] ==== Subtraction Use the `subtraction operator '-'` to SUBTRACT a right-hand side numeric type value from a left-hand side numeric type value. Rules for resultant overflow and NaN values follow the JVM specification. *Errors* * If either of the values is a non-numeric type. *Grammar* [source,ANTLR4] ---- subtraction: expression '-' expression; ---- *Promotion* [cols="<1,^1,^1,^1,^1,^1,^1,^1,^1"] |==== | | byte | short | char | int | long | float | double | def | byte | int | int | int | int | long | float | double | def | short | int | int | int | int | long | float | double | def | char | int | int | int | int | long | float | double | def | int | int | int | int | int | long | float | double | def | long | long | long | long | long | long | float | double | def | float | float | float | float | float | float | float | double | def | double | double | double | double | double | double | double | double | def | def | def | def | def | def | def | def | def | def |==== *Examples* * Subtraction with different numeric types. + [source,Painless] ---- int i = 29-4; <1> double d = i-7.5; <2> ---- + <1> declare `int i`; subtract `int 4` from `int 29` -> `int 25`; store `int 25` in `i` <2> declare `double d` load from `int i` -> `int 25`; promote `int 25` and `double 7.5`: result `double`; implicit cast `int 25` to `double 25.0` -> `double 25.0`; subtract `double 33.0` by `double 7.5` -> `double 25.5`; store `double 25.5` to `d` + * Subtraction with the `def` type. + [source,Painless] ---- def x = 5-4; <1> def y = x-2; <2> ---- <1> declare `def x`; subtract `int 4` and `int 5` -> `int 1`; implicit cast `int 1` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 1`; subtract `int 2` from `int 1` -> `int -1`; implicit cast `int -1` to `def` -> `def`; store `def` to `y` [[left-shift-operator]] ==== Left Shift Use the `left shift operator '<<'` to SHIFT lower order bits to higher order bits in a left-hand side integer type value by the distance specified in a right-hand side integer type value. *Errors* * If either of the values is a non-integer type. * If the right-hand side value cannot be cast to an int type. *Grammar* [source,ANTLR4] ---- left_shift: expression '<<' expression; ---- *Promotion* The left-hand side integer type value is promoted as specified in the table below. The right-hand side integer type value is always implicitly cast to an `int` type value and truncated to the number of bits of the promoted type value. [options="header",cols="<1,<1"] |==== | original | promoted | byte | int | short | int | char | int | int | int | long | long | def | def |==== *Examples* * Left shift with different integer types. + [source,Painless] ---- int i = 4 << 1; <1> long l = i << 2L; <2> ---- + <1> declare `int i`; left shift `int 4` by `int 1` -> `int 8`; store `int 8` in `i` <2> declare `long l` load from `int i` -> `int 8`; implicit cast `long 2` to `int 2` -> `int 2`; left shift `int 8` by `int 2` -> `int 32`; implicit cast `int 32` to `long 32` -> `long 32`; store `long 32` to `l` + * Left shift with the `def` type. + [source,Painless] ---- def x = 4 << 2; <1> def y = x << 1; <2> ---- <1> declare `def x`; left shift `int 4` by `int 2` -> `int 16`; implicit cast `int 16` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 16`; left shift `int 16` by `int 1` -> `int 32`; implicit cast `int 32` to `def` -> `def`; store `def` to `y` [[right-shift-operator]] ==== Right Shift Use the `right shift operator '>>'` to SHIFT higher order bits to lower order bits in a left-hand side integer type value by the distance specified in a right-hand side integer type value. The highest order bit of the left-hand side integer type value is preserved. *Errors* * If either of the values is a non-integer type. * If the right-hand side value cannot be cast to an int type. *Grammar* [source,ANTLR4] ---- right_shift: expression '>>' expression; ---- *Promotion* The left-hand side integer type value is promoted as specified in the table below. The right-hand side integer type value is always implicitly cast to an `int` type value and truncated to the number of bits of the promoted type value. [options="header",cols="<1,<1"] |==== | original | promoted | byte | int | short | int | char | int | int | int | long | long | def | def |==== *Examples* * Right shift with different integer types. + [source,Painless] ---- int i = 32 >> 1; <1> long l = i >> 2L; <2> ---- + <1> declare `int i`; right shift `int 32` by `int 1` -> `int 16`; store `int 16` in `i` <2> declare `long l` load from `int i` -> `int 16`; implicit cast `long 2` to `int 2` -> `int 2`; right shift `int 16` by `int 2` -> `int 4`; implicit cast `int 4` to `long 4` -> `long 4`; store `long 4` to `l` + * Right shift with the `def` type. + [source,Painless] ---- def x = 16 >> 2; <1> def y = x >> 1; <2> ---- <1> declare `def x`; right shift `int 16` by `int 2` -> `int 4`; implicit cast `int 4` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 4`; right shift `int 4` by `int 1` -> `int 2`; implicit cast `int 2` to `def` -> `def`; store `def` to `y` [[unsigned-right-shift-operator]] ==== Unsigned Right Shift Use the `unsigned right shift operator '>>>'` to SHIFT higher order bits to lower order bits in a left-hand side integer type value by the distance specified in a right-hand side type integer value. The highest order bit of the left-hand side integer type value is *not* preserved. *Errors* * If either of the values is a non-integer type. * If the right-hand side value cannot be cast to an int type. *Grammar* [source,ANTLR4] ---- unsigned_right_shift: expression '>>>' expression; ---- *Promotion* The left-hand side integer type value is promoted as specified in the table below. The right-hand side integer type value is always implicitly cast to an `int` type value and truncated to the number of bits of the promoted type value. [options="header",cols="<1,<1"] |==== | original | promoted | byte | int | short | int | char | int | int | int | long | long | def | def |==== *Examples* * Unsigned right shift with different integer types. + [source,Painless] ---- int i = -1 >>> 29; <1> long l = i >>> 2L; <2> ---- + <1> declare `int i`; unsigned right shift `int -1` by `int 29` -> `int 7`; store `int 7` in `i` <2> declare `long l` load from `int i` -> `int 7`; implicit cast `long 2` to `int 2` -> `int 2`; unsigned right shift `int 7` by `int 2` -> `int 3`; implicit cast `int 3` to `long 3` -> `long 3`; store `long 3` to `l` + * Unsigned right shift with the `def` type. + [source,Painless] ---- def x = 16 >>> 2; <1> def y = x >>> 1; <2> ---- <1> declare `def x`; unsigned right shift `int 16` by `int 2` -> `int 4`; implicit cast `int 4` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 4`; unsigned right shift `int 4` by `int 1` -> `int 2`; implicit cast `int 2` to `def` -> `def`; store `def` to `y` [[bitwise-and-operator]] ==== Bitwise And Use the `bitwise and operator '&'` to AND together each bit within two integer type values where if both bits at the same index are `1` the resultant bit is `1` and `0` otherwise. *Errors* * If either of the values is a non-integer type. *Bits* [cols="^1,^1,^1"] |==== | | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |==== *Grammar* [source,ANTLR4] ---- bitwise_and: expression '&' expression; ---- *Promotion* [cols="<1,^1,^1,^1,^1,^1,^1"] |==== | | byte | short | char | int | long | def | byte | int | int | int | int | long | def | short | int | int | int | int | long | def | char | int | int | int | int | long | def | int | int | int | int | int | long | def | long | long | long | long | long | long | def | def | def | def | def | def | def | def |==== *Examples* * Bitwise and with different integer types. + [source,Painless] ---- int i = 5 & 6; <1> long l = i & 5L; <2> ---- + <1> declare `int i`; bitwise and `int 5` and `int 6` -> `int 4`; store `int 4` in `i` <2> declare `long l` load from `int i` -> `int 4`; promote `int 4` and `long 5`: result `long`; implicit cast `int 4` to `long 4` -> `long 4`; bitwise and `long 4` and `long 5` -> `long 4`; store `long 4` to `l` + * Bitwise and with the `def` type. + [source,Painless] ---- def x = 15 & 6; <1> def y = x & 5; <2> ---- <1> declare `def x`; bitwise and `int 15` and `int 6` -> `int 6`; implicit cast `int 6` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 6`; bitwise and `int 6` and `int 5` -> `int 4`; implicit cast `int 4` to `def` -> `def`; store `def` to `y` [[bitwise-xor-operator]] ==== Bitwise Xor Use the `bitwise xor operator '^'` to XOR together each bit within two integer type values where if one bit is a `1` and the other bit is a `0` at the same index the resultant bit is `1` otherwise the resultant bit is `0`. *Errors* * If either of the values is a non-integer type. *Bits* The following table illustrates the resultant bit from the xoring of two bits. [cols="^1,^1,^1"] |==== | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |==== *Grammar* [source,ANTLR4] ---- bitwise_xor: expression '^' expression; ---- *Promotion* [cols="<1,^1,^1,^1,^1,^1,^1"] |==== | | byte | short | char | int | long | def | byte | int | int | int | int | long | def | short | int | int | int | int | long | def | char | int | int | int | int | long | def | int | int | int | int | int | long | def | long | long | long | long | long | long | def | def | def | def | def | def | def | def |==== *Examples* * Bitwise xor with different integer types. + [source,Painless] ---- int i = 5 ^ 6; <1> long l = i ^ 5L; <2> ---- + <1> declare `int i`; bitwise xor `int 5` and `int 6` -> `int 3`; store `int 3` in `i` <2> declare `long l` load from `int i` -> `int 4`; promote `int 3` and `long 5`: result `long`; implicit cast `int 3` to `long 3` -> `long 3`; bitwise xor `long 3` and `long 5` -> `long 6`; store `long 6` to `l` + * Bitwise xor with the `def` type. + [source,Painless] ---- def x = 15 ^ 6; <1> def y = x ^ 5; <2> ---- <1> declare `def x`; bitwise xor `int 15` and `int 6` -> `int 9`; implicit cast `int 9` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 9`; bitwise xor `int 9` and `int 5` -> `int 12`; implicit cast `int 12` to `def` -> `def`; store `def` to `y` [[bitwise-or-operator]] ==== Bitwise Or Use the `bitwise or operator '|'` to OR together each bit within two integer type values where if at least one bit is a `1` at the same index the resultant bit is `1` otherwise the resultant bit is `0`. *Errors* * If either of the values is a non-integer type. *Bits* The following table illustrates the resultant bit from the oring of two bits. [cols="^1,^1,^1"] |==== | | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |==== *Grammar* [source,ANTLR4] ---- bitwise_or: expression '|' expression; ---- *Promotion* [cols="<1,^1,^1,^1,^1,^1,^1"] |==== | | byte | short | char | int | long | def | byte | int | int | int | int | long | def | short | int | int | int | int | long | def | char | int | int | int | int | long | def | int | int | int | int | int | long | def | long | long | long | long | long | long | def | def | def | def | def | def | def | def |==== *Examples* * Bitwise or with different integer types. + [source,Painless] ---- int i = 5 | 6; <1> long l = i | 8L; <2> ---- + <1> declare `int i`; bitwise or `int 5` and `int 6` -> `int 7`; store `int 7` in `i` <2> declare `long l` load from `int i` -> `int 7`; promote `int 7` and `long 8`: result `long`; implicit cast `int 7` to `long 7` -> `long 7`; bitwise or `long 7` and `long 8` -> `long 15`; store `long 15` to `l` + * Bitwise or with the `def` type. + [source,Painless] ---- def x = 5 ^ 6; <1> def y = x ^ 8; <2> ---- <1> declare `def x`; bitwise or `int 5` and `int 6` -> `int 7`; implicit cast `int 7` to `def` -> `def`; store `def` in `x` <2> declare `def y`; load from `x` -> `def`; implicit cast `def` to `int 7`; bitwise or `int 7` and `int 8` -> `int 15`; implicit cast `int 15` to `def` -> `def`; store `def` to `y`