[[ml-configuring-categories]] === Categorizing log messages Application log events are often unstructured and contain variable data. For example: //Obtained from it_ops_new_app_logs.json [source,js] ---------------------------------- {"time":1454516381000,"message":"org.jdbi.v2.exceptions.UnableToExecuteStatementException: com.mysql.jdbc.exceptions.MySQLTimeoutException: Statement cancelled due to timeout or client request [statement:\"SELECT id, customer_id, name, force_disabled, enabled FROM customers\"]","type":"logs"} ---------------------------------- //NOTCONSOLE You can use {ml} to observe the static parts of the message, cluster similar messages together, and classify them into message categories. The {ml} model learns what volume and pattern is normal for each category over time. You can then detect anomalies and surface rare events or unusual types of messages by using count or rare functions. For example: //Obtained from it_ops_new_app_logs.sh [source,js] ---------------------------------- PUT _xpack/ml/anomaly_detectors/it_ops_new_logs { "description" : "IT Ops Application Logs", "analysis_config" : { "categorization_field_name": "message", <1> "bucket_span":"30m", "detectors" :[{ "function":"count", "by_field_name": "mlcategory", <2> "detector_description": "Unusual message counts" }], "categorization_filters":[ "\\[statement:.*\\]"] }, "analysis_limits":{ "categorization_examples_limit": 5 }, "data_description" : { "time_field":"time", "time_format": "epoch_ms" } } ---------------------------------- //CONSOLE <1> The `categorization_field_name` property indicates which field will be categorized. <2> The resulting categories can be used in a detector by setting `by_field_name`, `over_field_name`, or `partition_field_name` to the keyword `mlcategory`. The optional `categorization_examples_limit` property specifies the maximum number of examples that are stored in memory and in the results data store for each category. The default value is `4`. Note that this setting does not affect the categorization; it just affects the list of visible examples. If you increase this value, more examples are available, but you must have more storage available. If you set this value to `0`, no examples are stored. The optional `categorization_filters` property can contain an array of regular expressions. If a categorization field value matches the regular expression, the portion of the field that is matched is not taken into consideration when defining categories. The categorization filters are applied in the order they are listed in the job configuration, which allows you to disregard multiple sections of the categorization field value. In this example, we have decided that we do not want the detailed SQL to be considered in the message categorization. This particular categorization filter removes the SQL statement from the categorization algorithm. If your data is stored in {es}, you can create an advanced job with these same properties: [role="screenshot"] image::images/ml-category-advanced.jpg["Advanced job configuration options related to categorization"] NOTE: To add the `categorization_examples_limit` property, you must use the **Edit JSON** tab and copy the `analysis_limits` object from the API example. After you open the job and start the {dfeed} or supply data to the job, you can view the results in {kib}. For example: [role="screenshot"] image::images/ml-category-anomalies.jpg["Categorization example in the Anomaly Explorer"] For this type of job, the **Anomaly Explorer** contains extra information for each anomaly: the name of the category (for example, `mlcategory 11`) and examples of the messages in that category. In this case, you can use these details to investigate occurrences of unusually high message counts for specific message categories.