[[query-dsl-query-string-query]] === Query String Query A query that uses a query parser in order to parse its content. Here is an example: [source,js] -------------------------------------------------- { "query_string" : { "default_field" : "content", "query" : "this AND that OR thus" } } -------------------------------------------------- The `query_string` top level parameters include: [cols="<,<",options="header",] |======================================================================= |Parameter |Description |`query` |The actual query to be parsed. |`default_field` |The default field for query terms if no prefix field is specified. Defaults to the `index.query.default_field` index settings, which in turn defaults to `_all`. |`default_operator` |The default operator used if no explicit operator is specified. For example, with a default operator of `OR`, the query `capital of Hungary` is translated to `capital OR of OR Hungary`, and with default operator of `AND`, the same query is translated to `capital AND of AND Hungary`. The default value is `OR`. |`analyzer` |The analyzer name used to analyze the query string. |`allow_leading_wildcard` |When set, `*` or `?` are allowed as the first character. Defaults to `true`. |`lowercase_expanded_terms` |Whether terms of wildcard, prefix, fuzzy, and range queries are to be automatically lower-cased or not (since they are not analyzed). Default it `true`. |`enable_position_increments` |Set to `true` to enable position increments in result queries. Defaults to `true`. |`fuzzy_max_expansions` |Controls the number of terms fuzzy queries will expand to. Defaults to `50` |`fuzzy_min_sim` |Set the minimum similarity for fuzzy queries. Defaults to `0.5` |`fuzzy_prefix_length` |Set the prefix length for fuzzy queries. Default is `0`. |`phrase_slop` |Sets the default slop for phrases. If zero, then exact phrase matches are required. Default value is `0`. |`boost` |Sets the boost value of the query. Defaults to `1.0`. |`analyze_wildcard` |By default, wildcards terms in a query string are not analyzed. By setting this value to `true`, a best effort will be made to analyze those as well. |`auto_generate_phrase_queries` |Default to `false`. |`minimum_should_match` |A value controlling how many "should" clauses in the resulting boolean query should match. It can be an absolute value (`2`), a percentage (`30%`) or a <>. |`lenient` |If set to `true` will cause format based failures (like providing text to a numeric field) to be ignored. (since 0.19.4). |======================================================================= When a multi term query is being generated, one can control how it gets rewritten using the <> parameter. [float] ==== Default Field When not explicitly specifying the field to search on in the query string syntax, the `index.query.default_field` will be used to derive which field to search on. It defaults to `_all` field. So, if `_all` field is disabled, it might make sense to change it to set a different default field. [float] ==== Multi Field The `query_string` query can also run against multiple fields. The idea of running the `query_string` query against multiple fields is by internally creating several queries for the same query string, each with `default_field` that match the fields provided. Since several queries are generated, combining them can be automatically done either using a `dis_max` query or a simple `bool` query. For example (the `name` is boosted by 5 using `^5` notation): [source,js] -------------------------------------------------- { "query_string" : { "fields" : ["content", "name^5"], "query" : "this AND that OR thus", "use_dis_max" : true } } -------------------------------------------------- Simple wildcard can also be used to search "within" specific inner elements of the document. For example, if we have a `city` object with several fields (or inner object with fields) in it, we can automatically search on all "city" fields: [source,js] -------------------------------------------------- { "query_string" : { "fields" : ["city.*"], "query" : "this AND that OR thus", "use_dis_max" : true } } -------------------------------------------------- Another option is to provide the wildcard fields search in the query string itself (properly escaping the `*` sign), for example: `city.\*:something`. (since 0.19.4). When running the `query_string` query against multiple fields, the following additional parameters are allowed: [cols="<,<",options="header",] |======================================================================= |Parameter |Description |`use_dis_max` |Should the queries be combined using `dis_max` (set it to `true`), or a `bool` query (set it to `false`). Defaults to `true`. |`tie_breaker` |When using `dis_max`, the disjunction max tie breaker. Defaults to `0`. |======================================================================= The fields parameter can also include pattern based field names, allowing to automatically expand to the relevant fields (dynamically introduced fields included). For example: [source,js] -------------------------------------------------- { "query_string" : { "fields" : ["content", "name.*^5"], "query" : "this AND that OR thus", "use_dis_max" : true } } -------------------------------------------------- [[Syntax_Extension]] [float] ==== Syntax Extension There are several syntax extensions to the Lucene query language. [float] ===== missing / exists The `_exists_` and `_missing_` syntax allows to control docs that have fields that exists within them (have a value) and missing. The syntax is: `_exists_:field1`, `_missing_:field` and can be used anywhere a query string is used.